Estimation of the Heat and Water Budgets of the Persian Gulf Using A Regional Climate Model

Title Estimation of the Heat and Water Budgets of the Persian Gulf Using A Regional Climate Model
Publication Type Journal Article
Year of Publication 2015
Authors Pengfei Xue and Elfatih A. B. Eltahir
Journal Journal of Climate
Volume 28
Issue 4

Due to scarcity of observational data, existing estimates of the heat and water budgets of the Persian Gulf are rather uncertain. This uncertainty leaves open the fundamental question of whether this water body is a net heat source or a net heat sink to the atmosphere. Previous regional modeling studies either used specified surface fluxes to simulate the hydrodynamics of the Gulf or prescribed SST in simulating the regional atmospheric climate; neither of these two approaches is suitable for addressing the above question or for projecting the future climate in this region. For the first time, a high-resolution two-way coupled Gulf-atmosphere regional model (GARM) is developed, forced by solar radiation and constrained by observed lateral boundary conditions, suited for the study of current and future climates of the Persian Gulf. Here, we demonstrate the unique capability of this model in consistently predicting surface heat and water fluxes, lateral heat and water exchanges with the Arabian Sea, as well as the variability of water temperature and water mass. Although these variables are strongly coupled, only SST has been directly and sufficiently observed. The coupled model succeeds in simulating the water and heat budgets of the Gulf without any artificial flux adjustment, as demonstrated in the close agreement of model simulation with satellite and in-situ observations.

The coupled regional climate model simulates a net surface heat flux of +3W/m2, suggesting a small net heat flux from the atmosphere into the Gulf. The annual evaporation from the Gulf is 1.84 m/year, and the annual influx and outflux of water through the Strait of Hormuz between the Gulf and the Arabian Sea are equivalent to Gulf-averaged precipitation and evaporation rates of 33.7 m/year and 32.1m/year, with a net influx of water equivalent to a Gulf-averaged precipitation rate of 1.6 m/year. The average depth of the Gulf water is ~38 meters. Hence, we estimate that the mean residency time scale for the entire Gulf is ~14 months.

Relevant Projects:
Numerical Modeling of Ocean-Atmosphere Interactions in the Persian Gulf
Google Scholar