Prevention of malaria transmission around reservoirs: an observational and modelling study on the effect of wind direction and village location


Title Prevention of malaria transmission around reservoirs: an observational and modelling study on the effect of wind direction and village location
Publication Type Journal Article
Year of Publication 2018
Authors N. Endo and E. A. B. Eltahir
Journal Lancet Planet Health
Abstract

Background Many large dams are constructed annually in Africa, with associated reservoirs that might exacerbate the risk of malaria in new villages built nearby. We aimed to investigate the heterogeneous risk of malaria around reservoirs related to the impact of wind direction on malaria transmission.

Methods Between June 15, 2012, and April 22, 2015, we obtained field data on climate and hydrological conditions, and monitored Anopheles mosquito populations around the Koka reservoir in Ethiopia using in-situ weather stations, mosquito light traps, and larval dipping. The field data were used to calibrate a field-tested, spatially explicit mechanistic malaria transmission model, the Hydrology, Entomology, and Malaria Transmission Simulator (HYDREMATS), to investigate the effect of relative wind direction on malaria transmission and associated mechanisms. We combined our simulation results and observational data to assess the association between village location around a reservoir and risk of malaria.

Findings HYDREMATS simulations showed that wind blowing from a village towards a reservoir increases the size of malaria vector populations, whereas wind blowing from a reservoir towards a village decreases the size of malaria vector populations, which was consistent with our field data. Larval mortality is low in locations with village-to-reservoir wind due to weak surface waves, and this wind direction creates conditions that enable mosquitoes to identify village locations more easily than in conditions caused by reservoir-to-village wind, which increases the size of malaria vector populations, and thus malaria transmission. Among the wind conditions investigated (0·5–5 m/s), the effect of CO2 attraction on the size of the Anopheles population was largest at wind speeds of 0·5 m/s and 1 m/s, decreasing with higher wind speed. At a wind speed of 5 m/s, the effect of CO2 attraction was negligible, whereas the effect of waves was strongest. The effect of advection on Anopheles population size was negligible at all wind speeds and wind directions.

Interpretation The effect of wind on malaria transmission around reservoirs can be substantial. The transmission of malaria can be minimised if the location of villages situated near a reservoir is carefully considered. For areas in which the environmental conditions surrounding a resevoir are equal, villages should be located downwind of reservoirs to reduce the incidence of malaria, although further research will be required in locations where wind direction changes in different seasons.

File:
PIIS254251961830175X.pdf
Google Scholar