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Supplementary	Methods	

Environmental	data	inputs	for	HYDREMATS	simulations	

Environmental	data	inputs	used	for	this	study	are	summarized	in	Supplementary	

Table	4.		We	used	high-resolution	satellite	observations	of	rainfall	from	the	Climate	

Prediction	Center	Morphing	Technique	(CMORPH)	Version	1.0	data	set,	which	gives	

~8km	resolution	rainfall	data	every	30	minutes1,	and	has	been	found	in	multiple	

comparison	studies	to	be	one	of	the	most	skilled	satellite	rainfall	products	currently	

available2.		CMORPH	data	is	created	by	combining	images	from	multiple	passive	

microwave	sensors,	and	interpolating	them	forward	and	backward	in	space	and	

time	based	on	cloud	advection	vectors	calculated	from	geostationary	infrared	

sensors1.	

Like	most	satellite	products,	CMORPH	is	known	to	have	a	positive	bias	compared	to	

rain	gauge	data	in	West	Africa,	primarily	due	to	overestimation	of	high-intensity	

rainfall3.		However,	after	a	simple	bias	correction,	CMORPH	can	be	used	as	an	input	

to	HYDREMATS	to	accurately	simulate	the	hydrological	variables	relevant	to	malaria	

transmission4.		We	used	a	probability	matching	technique5	so	that	the	cumulative	

distribution	function	(CDF)	of	corrected	hourly	CMORPH	data	matched	that	of	the	

ground	observations.		Variations	of	this	technique	have	recently	been	used	to	

correct	biases	in	CMORPH	using	rain	gauge	data6,7.			

We	downloaded	temperature,	wind	speed,	wind	direction,	and	radiation	data	for	the	

HYDREMATS	simulations	from	the	ERA	Interim	data	set8	(downloaded	from	

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim).	We	assumed	

uniform	climatic	conditions	within	the	0.75	degree	ERA	grid	cell.		We	converted	

ERA-interim	wind	speed	data	from	a	10-meter	elevation	to	a	2-meter	elevation	for	

use	in	HYDREMATS	by	using	a	logarithmic	profile.		Also,	we	linearly	interpolated	the	

Climate change unlikely to increase malaria 
burden in West Africa

http://dx.doi.org/10.1038/nclimate3085












































	 23	

		
Supplementary	Figure	9	
	
A)	The	colors	on	the	map	indicates	the	changes	in	average	rainfall	between	current	
(1975-2005)	and	future	(2070-2100)	conditions,	averaging	predictions	between	the	
two	climate	models.		The	labeled	rectangles	group	our	study	area	by	response	to	
climate	change.		B	and	C)	Detailed	results	for	observed	changes	in	R0	and	malaria	
prevalence	are	shown	for	two	sites,	M7	(Fig	3Sb)	in	the	south	and	N1	(Fig.	3SC)	in	
the	north.	The	top	rows	show	log10	(R0)	and	the	bottom	row	shows	malaria	mean	
prevalence	in	children	aged	2-10.		Open	circles	indicate	model	results	in	the	current	
climate,	crosses	show	results	with	future	climate	conditions	as	predicted	by	CCSM4	
and	triangles	indicate	results	using	climate	predictions	from	MPI-ESM-MR.		The	left	
panels	are	modeling	results	from	the	detailed	HYDREMATS	simulations.		The	right	
panels	apply	a	regression	relationship	to	annual	rainfall	and	mean	wet	season	
temperature	data	from	CRU	TS3.1.	
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Supplementary	Figure	10	
Migration	of	study	sites	through	rainfall-temperature	space	under	different	
projections	of	future	climate.		The	triangular	markers	in	each	subplot	show	the	
location	of	a	study	site	in	rainfall-temperature	space	under	current	(yellow)	and	
future	(green)	conditions	under	projections	from	four	climate	models:	CCSM4,	MPI-
ESM-MR,	CanESM2	and	MIROC5.		The	markers	are	overlaid	on	plots	of	log(R0)	(left	
column)	and	malaria	prevalence	in	ages	2-10	(right	column).		The	spread	between	
green	markers	estimates	the	uncertainty	in	future	malaria	transmission	due	to	
differences	in	climate	projections.	
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Supplementary Table 1: HYDREMATS simulation results for baseline period 
(1975-2005) and future conditions (2070-2100). We show results for simulations using 
climate projections from the two GCMs selected for our study (CCSM4 and MPI-ESM-
MR), as well as two additional models as a sensitivity analyses (CanESM2 and 
MIROC5).  Red values indicate statistically significant decreases from baseline while 
green values indicate statistically significant increases.	
 
Proportion	of	years	with	R0	>	1	(95%	CI)	

	 	 	 	Sub-
region	 	Site	 	Base	 	CCSM4	 	MPI-ESM-MR	 	CanESM	 	MIROC5	
i			 	M3		 0.20	(0.04,0.48)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.27	(0.08,0.55)	
i			 	S1		 0.73	(0.45,0.92)	 0.27	(0.08,0.55)	 0.07	(0.00,0.32)	 0.00	(0.00,0.22)	 0.40	(0.16,0.68)	
i			 	M4		 0.87	(0.60,0.98)	 0.53	(0.27,0.79)	 0.33	(0.12,0.62)	 0.00	(0.00,0.22)	 0.93	(0.68,1.00)	
ii		 	M1		 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	
ii		 	M2		 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	
ii		 	N1		 0.13	(0.02,0.40)	 0.07	(0.00,0.32)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	
iii	 	N2		 0.53	(0.27,0.79)	 0.67	(0.38,0.88)	 0.07	(0.00,0.32)	 0.40	(0.16,0.68)	 1.00	(0.78,1.00)	
iii	 	N3		 1.00	(0.78,1.00)	 0.93	(0.68,1.00)	 0.33	(0.12,0.62)	 0.53	(0.27,0.79)	 1.00	(0.78,1.00)	
iv		 	M5		 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	
iv		 	M6		 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	
iv		 	NA1	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	
iv		 	M7		 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	

	 	 	 	 	 	 	Log_10(R0)	(95%	
CI)	

	 	 	 	 	Sub-
region	 	Site	 	Base	 	CCSM4	 	MPI-ESM-MR	 	CanESM	 	MIROC5	
i			 	M3		 -0.3	(-0.7,-0.0)	 -2.1	(-2.4,-1.7)	 -1.5	(-1.8,-1.1)	 -2.4	(-2.7,-2.0)	 -0.2	(-0.4,-0.0)	
i			 	S1		 0.7	(0.2,1.1)	 -0.5	(-0.9,-0.0)	 -1.5	(-2.0,-1.0)	 -2.8	(-3.0,-2.5)	 -0.2	(-0.6,0.1)	
i			 	M4		 1.0	(0.7,1.4)	 -0.0	(-0.5,0.5)	 -0.3	(-0.7,0.1)	 -2.4	(-2.7,-2.1)	 0.8	(0.5,1.0)	
ii		 	M1		 -1.9	(-2.4,-1.4)	 -2.8	(-3.0,-2.6)	 -3.0	(-3.0,-3.0)	 -3.0	(-3.0,-3.0)	 -2.5	(-2.8,-2.2)	
ii		 	M2		 -2.2	(-2.7,-1.7)	 -2.7	(-3.0,-2.4)	 -2.8	(-3.0,-2.6)	 -2.9	(-3.1,-2.8)	 -1.9	(-2.2,-1.6)	
ii		 	N1		 -0.7	(-1.1,-0.4)	 -1.3	(-1.7,-0.9)	 -2.2	(-2.6,-1.7)	 -2.2	(-2.6,-1.7)	 -0.8	(-1.0,-0.6)	
iii	 	N2		 0.0	(-0.3,0.3)	 0.2	(-0.2,0.6)	 -0.8	(-1.1,-0.5)	 -0.1	(-0.3,0.1)	 1.0	(0.8,1.3)	
iii	 	N3		 1.0	(0.7,1.3)	 0.9	(0.6,1.1)	 -0.2	(-0.5,0.0)	 -0.1	(-0.4,0.1)	 1.2	(1.1,1.4)	
iv		 	M5		 1.6	(1.5,1.8)	 1.4	(1.2,1.6)	 1.2	(0.9,1.4)	 1.2	(0.9,1.5)	 1.5	(1.3,1.6)	
iv		 	M6		 2.0	(1.9,2.2)	 2.1	(1.9,2.2)	 1.9	(1.8,2.0)	 1.5	(1.4,1.6)	 2.3	(2.2,2.4)	
iv		 	NA1	 1.6	(1.3,1.8)	 1.7	(1.6,1.9)	 1.4	(1.1,1.7)	 1.7	(1.5,1.9)	 2.0	(1.9,2.1)	
iv		 	M7		 1.9	(1.8,2.0)	 2.1	(2.0,2.3)	 1.9	(1.8,2.1)	 1.6	(1.5,1.6)	 2.4	(2.2,2.5)	

	 	 	 	 	 	 	Peak	Prevalence	in	children	aged	2-10	
(95%	CI)	

	 	 	 	Sub-
region	 	Site	 	Base	 	CCSM4	 	MPI-ESM-MR	 	CanESM	 	MIROC5	
i			 	M3		 2%	(1,3)	 3%	(2,4)	 2%	(1,3)	 3%	(1,5)	 3%	(1,4)	
i			 	S1		 11%	(2,20)	 2%	(1,2)	 2%	(1,2)	 2%	(2,3)	 2%	(1,2)	
i			 	M4		 46%	(34,58)	 9%	(5,14)	 4%	(2,6)	 9%	(5,14)	 17%	(7,28)	
ii		 	M1		 1%	(1,1)	 1%	(1,1)	 1%	(1,1)	 2%	(1,2)	 1%	(1,2)	
ii		 	M2		 2%	(1,3)	 2%	(1,3)	 2%	(1,3)	 3%	(2,5)	 2%	(1,4)	
ii		 	N1		 2%	(1,3)	 2%	(1,3)	 2%	(1,2)	 2%	(1,4)	 2%	(0,4)	
iii	 	N2		 2%	(1,4)	 4%	(1,6)	 2%	(1,4)	 4%	(0,8)	 19%	(8,29)	
iii	 	N3		 23%	(11,35)	 13%	(10,16)	 4%	(2,6)	 4%	(0,8)	 26%	(19,33)	
iv		 	M5		 42%	(26,57)	 43%	(26,60)	 30%	(13,47)	 27%	(8,46)	 29%	(18,40)	
iv		 	M6		 66%	(57,75)	 67%	(59,76)	 64%	(55,74)	 33%	(18,48)	 69%	(61,78)	
iv		 	NA1	 48%	(29,67)	 66%	(52,80)	 54%	(38,70)	 55%	(38,71)	 66%	(51,80)	
iv		 	M7		 65%	(55,74)	 67%	(57,78)	 66%	(57,76)	 35%	(19,51)	 69%	(59,79)	
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Supplementary Table 2:  Coefficient of determination (R2) values for annual 
rainfall, TJAS and indices of malaria transmission 

		 TJAS	 log10	(R0)	 log10	(EIR)	 Pr	2-10	 Imm	
Annual	
rainfall	 0.51	 0.72	 0.81	 0.62	 0.68	

TJAS	 		 0.67	 0.64	 0.52	 0.42	
log10	(R0)	 		 		 0.87	 0.51	 0.53	
log10	(EIR)	 		 		 		 0.7	 0.81	
Pr	2-10	 		 		 		 		 0.65	

	 	 	 	 	 	
	

	
All	pairs	of	variables	are	correlated	with	significance	levels	p	<<	0.0001	
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Supplementary Table 3: Coefficients and statistics of regression model.   

Regression	models	take	the	form	of	f(TJAS,rain)=a+b*TJAS+c*rain/1000	
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Supplementary Table 4: Summary of data sources 
	

	 Data	source	 Spatial	
resolution	

Temporal	
resolution	

Reference	

Baseline	
Climatology	

	 	 	 	

temperature	 CRU	TS	3.21	 0.5	x	0.5	
degree	

1	month				
1901-2012	

35	

rainfall	 CRU	TS	3.21	 0.5	x	0.5	
degree	

1	month				
1901-2012	

35	

Meteorological	
Inputs	for	
HYDREMATS	
Simulation	

	 	 	 	

precipitation	 CMORPH	version	1.0	 ~8km	 30	min							
1998-present	

1	

temperature	 ERA-Interim	 .75	x	.75	
degree	

3	hour								
1979-present	

8	

wind	speed	 ERA-Interim	 .75	x	.75	
degree	

3	hour								
1979-present	

8	

wind	direction	 ERA-Interim	 .75	x	.75	
degree	

3	hour									
1979-present	

8	

surface	radiation	 ERA-Interim	 .75	x	.75	
degree	

3	hour								
1979-present	

8	

Other	model	inputs	 	 	 	 	

soil	type	 Harmonized	World	Soil	
Database	

~1km	 Static	 10	

vegetation	 University	of	Maryland	
Landcover	

1km	 Static	 9	

topography	 Computed	from	Envisat	
synthetic	aperture	radar	
and	ground	survey	

10	m	 Static	
36	

household	locations	 Quickbird	image	 0.6	m	 Static	 26	
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Supplementary Table 5: Performance of CMIP5 Climate Models 
 

Model	Name	 Rainfall	Score	 Temperature	Score	 Total	

Zone	1	 Zone	2	 Zone	3	 Zone	1	 Zone	2	 Zone	3	

BNU-ESM	 1	 1	 1	 1	 1	 1	 6	

MIROC5	 1	 1	 		 1	 1	 1	 5	

MPI-ESM-MR			 1	 		 1	 1	 1	 		 4	

CANESM2	 		 		 		 1	 1	 1	 3	

CCSM4	 1	 1	 1	 		 		 		 3	

FGOALS-g2	 -1	 1	 		 1	 1	 		 2	

CESM1-CAM5		 		 1	 1	 		 		 		 2	

MIROC-ESM-CHEM			 		 		 		 		 		 1	 1	

FIO-ESM			 1	 		 		 		 		 		 1	

BCC-CSM1-1	 		 		 		 		 		 1	 1	

CNRM-CM5	 -1	 1	 1	 		 		 		 1	

CSIRO-Mk3-6-0			 -1	 -1	 		 1	 1	 1	 1	

CMCC-CM	 		 		 		 		 		 		 0	

GFDL-CM3	 		 		 		 		 		 		 0	

GISS-E2-H	 		 		 		 		 		 -1	 -1	

HadGEM2-AO	 		 		 		 -1	 		 		 -1	

ACCESS	 		 -1	 -1	 		 		 		 -2	

MRI-CGCM3			 		 -1	 -1	 		 -1	 		 -3	

EC-EARTH	 -1	 		 1	 -1	 -1	 -1	 -3	

IPSL-CM5A-MR			 		 		 		 -1	 -1	 -1	 -3	

GFDL-ESM2M	 -1	 -1	 -1	 		 		 		 -3	

inmcm4			 1	 		 -1	 -1	 -1	 -1	 -3	

HadGEM2-CC	 		 -1	 -1	 -1	 -1	 -1	 -5	
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