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Supplementary	Methods	

Environmental	data	inputs	for	HYDREMATS	simulations	

Environmental	data	inputs	used	for	this	study	are	summarized	in	Supplementary	

Table	4.		We	used	high-resolution	satellite	observations	of	rainfall	from	the	Climate	

Prediction	Center	Morphing	Technique	(CMORPH)	Version	1.0	data	set,	which	gives	

~8km	resolution	rainfall	data	every	30	minutes1,	and	has	been	found	in	multiple	

comparison	studies	to	be	one	of	the	most	skilled	satellite	rainfall	products	currently	

available2.		CMORPH	data	is	created	by	combining	images	from	multiple	passive	

microwave	sensors,	and	interpolating	them	forward	and	backward	in	space	and	

time	based	on	cloud	advection	vectors	calculated	from	geostationary	infrared	

sensors1.	

Like	most	satellite	products,	CMORPH	is	known	to	have	a	positive	bias	compared	to	

rain	gauge	data	in	West	Africa,	primarily	due	to	overestimation	of	high-intensity	

rainfall3.		However,	after	a	simple	bias	correction,	CMORPH	can	be	used	as	an	input	

to	HYDREMATS	to	accurately	simulate	the	hydrological	variables	relevant	to	malaria	

transmission4.		We	used	a	probability	matching	technique5	so	that	the	cumulative	

distribution	function	(CDF)	of	corrected	hourly	CMORPH	data	matched	that	of	the	

ground	observations.		Variations	of	this	technique	have	recently	been	used	to	

correct	biases	in	CMORPH	using	rain	gauge	data6,7.			

We	downloaded	temperature,	wind	speed,	wind	direction,	and	radiation	data	for	the	

HYDREMATS	simulations	from	the	ERA	Interim	data	set8	(downloaded	from	

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim).	We	assumed	

uniform	climatic	conditions	within	the	0.75	degree	ERA	grid	cell.		We	converted	

ERA-interim	wind	speed	data	from	a	10-meter	elevation	to	a	2-meter	elevation	for	

use	in	HYDREMATS	by	using	a	logarithmic	profile.		Also,	we	linearly	interpolated	the	
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ERA-Interim	data	from	the	provided	3-hour	resolution	to	a	1-hour	resolution	as	

required	by	HYDREMATS.	

We	assigned	the	dominant	vegetation	type	at	each	location	using	the	University	of	

Maryland	Land	Cover	Classification9,	and	assigned	soil	properties	using	the	

Harmonized	World	Soil	Database10.		We	represent	soil	crusting	in	the	model	using	a	

thin	layer	of	low-permeability	soil	as	is	typical	in	West	Africa	under	cultivated	

conditions11.		Because	this	study	focuses	on	climate	variables,	we	held	topography	

constant	between	locations	and	assumed	that	Banizoumbou,	Niger	topography	

represents	typical	topographical	conditions	and	housing	patterns	in	the	West	Africa	

Sahel12.		

	

	

Downscaling	and	bias	correction	of	climate	change	projections	

	

The	methodology	that	we	use	to	downscale	GCMs	predictions	of	changes	in	rainfall	

and	temperature	is	based	on	two	assumptions	that	are	rooted	in	the	conclusions	of	

previous	studies:	

	

(A)	The	GCMs	have	limited	accuracy	in	simulating	the	current	and	future	climate	of	

West	Africa	13-15.	In	particular	the	GCMs	have	poor	accuracy	in	simulating	the	

temporal	patterns	of	rainfall	at	the	daily	timescale16.	As	a	result,	we	only	use	the	

GCMs	simulations	to	extract	information	about	future	changes	in	(i)	annual	rainfall	

magnitude;	and	in	(ii)	seasonal	distribution	of	temperature;	

	

(B)	The	temporal	rainfall	patterns,	at	time	scales	from	minutes	to	weeks,	are	

critically	important	to	the	formation	of	the	water	pools,	the	main	breeding	sites	for	

mosquitos17.	The	physical	and	biological	relationships	that	shape	pool	formation,	

and	mosquito	population	dynamics	are	highly	non-linear.		It	is	not	trivial	how	to	

average	these	strongly	non-linear	relationships	form	small	scales	(1	hour,	10	m)	to	
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large	scales	(months,	10	kilometers)18.	This	is	why	in	the	simulations	presented	in	

this	paper,	our	malaria	transmission	simulations	are	carried	at	the	resolutions	of	1	

hour,	10	meters.	As	a	result,	the	patterns	of	rainfall	used	to	force	the	model	has	to	be	

realistic,	consistent	with	observations,	and	we	cannot	simply	use	the	typically	

erroneous	temporal	patterns	simulated	by	climate	models.	

	

Based	on	these	assumptions	and	discussion,	we	apply	the	following	methodology	in	

describing	the	forcing	of	our	simulations:	

	

(1)	The	magnitude	of	the	average	change	in	daily	temperature	is	estimated	from	the	

GCM	simulations	for	each	month	of	the	year	and	for	each	location	(x1,y1).		This	

estimated	change	is	then	added	uniformly	to	the	observed	time	series	from	ERA	

interim	reanalysis	data	set,	with	3-hour	temporal	resolution	and	2.5	degrees	spatial	

resolution,	at	(x1,y1),	as	a	straightforward	delta	method	approach19-21	.	The	

resulting	time	series	is	used	to	represent	the	future	temperature	at	(x1,y1).	

	

(2)	The	relative	change	in	magnitude	of	the	annual	rainfall,	under	future	climate	

conditions,	is	estimated	from	the	GCM	simulations	for	each	location	(x1,y1).	This	

relative	change	is	multiplied	by	the	actual	observed	annual	rainfall	at	(x1,y1),	in	

order	to	estimate	the	projected	future	annual	rainfall	at	(x1,y1).	As	a	variation	on	

the	delta	method,	rather	than	multiplying	our	daily	or	hourly	precipitation	time	

series	by	the	delta	value,	we	instead	chose	the	closest	location	(x1,y2)	where	the	

annual	rainfall	under	the	current	climate,	based	on	observed	satellite	data	that	has	8	

km	resolution,	is	equal	to	the	projected	future	rainfall	at	(x1,y1)	is	identified.	The	

satellite-based	time	series,	at	30	minutes	resolution,	at	(x1,y2)	is	assumed	to	

represent	the	future	rainfall	time	series	at	location	(x1,y1).		For	most	cases,	(x1,y2)	

is	located	within	about	100	kilometers	north	or	south	of	(x1,y1),	ie.	within	the	same	

ERA	interim	grid	point.	

	

This	approach	has	the	advantage	of	removing	GCM	bias,	while	retaining	fine-scale	

spatial	and	temporal	variability	of	historical	rainfall	and	temperature	19.		The	

© 2016 Macmillan Publishers Limited. All rights reserved. 

 



	 4	

disadvantage	is	that	the	method	does	not	account	for	changes	in	rainfall	and	

temperature	distributions	around	the	mean.		This	may	be	problematic,	especially	in	

the	case	of	extreme	events	such	as	floods	or	droughts,	which	are	important	for	

water	pool	formation,	and	very	high	temperatures,	which	affect	mosquito	survival.	

This	method	also	neglects	changes	to	the	West	African	monsoon,	which	have	been	

shown	in	recent	studies	to	occur	in	climate	models	as	a	result	of	several	competing	

physical	responses	to	climate	change	including	an	enhanced	convective	barrier	in	

the	pre-monsoon	months,	enhanced	monsoon	flow	due	to	greater	differential	in	

land-sea	temperatures,	and	vegetation	feedbacks	22-25.		The	effects	of	these	

mechanisms	lead	to	projected	decreases	in	rainfall	during	the	monsoon	onset,	

followed	by	increased	precipitation	later	in	the	wet	season	22-25.		The	timing	of	the	

switch	between	the	negative	to	positive	rainfall	anomaly	was	shown	to	determine	

the	overall	changes	to	total	rainfall	and	length	of	rainy	season,	and	remains	highly	

uncertain	23.		Such	effects	can	impact	malaria	transmission,	particularly	if	they	alter	

the	duration	of	the	rainy	season,	as	this	would	in	turn	alter	the	length	of	the	malaria	

transmission	season.		Changes	to	the	frequency	and	intensity	of	rainfall	events	

within	the	rainy	season	could	also	have	important	impacts,	as	these	affect	water	

pool	persistence	and	play	a	large	role	in	determining	the	malaria	response	to	

rainfall	17.	
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Supplementary	Discussion	

Comparison	of	simulated	variables	to	observational	data	

	

HYDREMATS	has	previously	undergone	extensive	validation	in	two	villages	in	

Southern	Niger26-28.		Data	sampling	locations	in	one	of	the	villages,	Banizoumbou,	

are	shown	in	Supplementary	Fig.	2.		Environmental	data	collected	included	one-

hour	resolution	meteorological	variables,	spatially	distributed	soil,	vegetation	and	

topography	values,	and	time-varying	measurements	of	soil	moisture,	and	the	depths	

and	temperatures	of	selected	recurring	water	pools.		Entomological	variables	

collected	included	adult	mosquitoes	captured	in	CDC	light	traps	and	mosquito	

larvae	collected	using	a	standard	dipping	method26,27.		Bimonthly	blood	samples	

were	taken	from	children	aged	one	through	five	years	old28.		We	demonstrated	the	

model’s	ability	to	simulate	hydrology,	entomology	and	malaria	prevalence	in	this	

region26-28.	

	

Here,	we	present	additional	model	validation,	through	a	comparison	of	simulations	

to	observations	from	three	other	sources:	the	Beier	data	set	on	EIR	and	malaria	

prevalence29,	malaria	prevalence	estimates	from	the	Malaria	Atlas	Project30,	and	

entomology	and	malaria	prevalence	data	from	the	Garki	district	in	Nigeria31.	

	

Comparison	to	Beier	data	

Beier	et	al.29	compiled	paired	data	from	31	locations	across	Africa	and	developed	a	

relationship	between	the	entomological	inoculation	rate	(EIR),	and	malaria	

prevalence.		These	paired	data	points	originated	from	multiple	countries	including	

Kenya,	Ethiopia,	Tanzania,	Republic	of	Congo,	Burkina	Faso,	and	Senegal,	spanning	a	

wide	range	of	climate	zones.		The	paired	data	points	were	selected	by	conducting	a	

literature	search	with	the	following	inclusion	criteria:	entomological	data	collected	

over	at	least	one	year	with	a	minimum	of	monthly	sampling	over	the	transmission	

season,	standard	methods	for	estimating	mosquito	densities	and	sporozoite	rates,	

and	no	vector	control	interventions.		Inclusion	criteria	for	the	prevalence	data	
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included	use	of	standard	blood	smear	techniques	and	reporting	by	time	period	and	

age	group.		In	instances	where	the	original	malaria	prevalence	data	were	reported	

for	multiple	time	periods	and	age	groups,	the	single	highest	prevalence	value	was	

selected.		The	analysis	showed	a	linear	relationship	between	prevalence	and	the	

logarithm	of	annual	EIR.		This	log-linear	relationship	persisted	when	data	were	

stratified	by	ecological	zone	as	well	as	between	East	and	West	Africa,	indicating	that	

this	is	a	fundamental	relationship	and	independent	of	climate.		These	data	therefore	

provide	a	test	for	the	human	immunity	and	malaria	transmission	component	of	

HYDREMATS,	which	has	been	less	extensively	tested	against	observations	than	the	

hydrology	and	entomology	components.	

	

Because	Beier	et	al.	used	the	maximum	prevalence	value	sampled	over	multiple	age	

groups	and	time	periods,	we	compared	the	data	to	the	maximum	simulated	

prevalence	for	the	2	to	10	year	age	group	from	our	equilibrium	simulations.		

HYDREMATS	was	able	to	reproduce	the	observed	log-linear	relationship	between	

EIR	and	peak	malaria	prevalence	(Figure	2,	main	text).	Our	simulation	results	and	

observational	data	agree	very	well	for	a	wide	range	of	epidemiological	conditions,	

from	0	to	over	300	infectious	bites	per	person	per	year.			

	

	

Comparison	to	data	from	the	Malaria	Atlas	Project	

	

The	Malaria	Atlas	Project	(MAP),	based	at	the	University	of	Oxford,	produces	maps	

showing	global	estimates	of	various	measures	of	malaria	risk.		MAP	compiles	and	

maintains	a	database	of	routine	malaria	prevalence	surveys.		The	current	maps	use	

over	22,000	geo-referenced	data	points	of	malaria	prevalence	measured	between	

1985	and	2010	from	across	the	85	malaria	endemic	nations	and	standardized	to	the	

2	to	10	year	old	age	group30.	Temperature	and	aridity	masks	are	used	to	predict	the	

limits	of	stable	malaria.		Within	the	predicted	limits	of	stable	malaria	transmission,	

these	prevalence	data	are	mapped	to	a	global	surface	at	a	5	km	x	5km	resolution	

using	Bayesian	inference	and	geospatial	modeling30.		The	MAP	estimate	of	malaria	
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prevalence	in	children	aged	2	to	10	years	is	shown	as	the	colored	surface	in	

Supplementary	Fig.	3,	top	panel.		The	colors	of	the	overlaying	circles	show	the	

prevalence	during	the	peak	malaria	transmission	season	simulated	by	HYDREMATS	

in	the	equilibrium	simulations.	

	

Supplementary	Fig.	3,	bottom	panel,	compares	simulated	peak	prevalence	to	the	

MAP	estimate,	with	results	of	the	equilibrium	simulation	on	the	right,	and	the	mean	

of	the	multiyear	simulation	on	the	left.		For	the	majority	of	the	twelve	locations,	

simulated	results	match	well	with	the	MAP	estimate.		One	outlier	in	the	equilibrium	

results	is	the	point	S1,	located	in	Senegal.		This	could	be	explained	in	part	by	

Senegal’s	malaria	control	activities,	which	cause	observed	prevalence	to	be	

substantially	lower	than	what	would	have	been	expected	given	the	environmental	

conditions.		Our	simulations	did	not	account	for	varying	levels	of	malaria	control	

between	locations.		Inter-annual	variability	is	likely	playing	a	role	as	well,	as	the	

MAP	estimates	do	not	address	seasonal	and	inter-annual	variability	in	response	to	

climate.		Another	discrepancy	between	simulations	and	MAP	estimates	are	the	three	

locations	(N1,	N2	and	M3)	where	simulated	prevalence	was	0%,	while	MAP	

estimates	levels	between	10	and	30%.		There	are	several	additional	explanations	for	

this	discrepancy.		One	is	that	in	the	sparsely	populated	regions	of	northern	Niger	

and	Mali,	there	are	very	few	observations	of	malaria	prevalence.		In	these	regions,	

MAP	estimates	rely	on	statistical	techniques	using	environmental	covariates	

including	rainfall,	temperature,	land	cover,	and	rural	versus	urban	classification.		

We	therefore	have	less	confidence	in	MAP	estimates	at	high	latitudes.		Another	

explanation	for	the	discrepancy	is	that	while	the	equilibrium	simulation	predicted	

R0	less	than	one	leading	to	elimination	of	the	parasite,	all	three	of	these	locations	

had	at	least	some	years	with	R0	greater	than	one.		Transmission	is	therefore	possible	

in	these	locations	if	the	parasite	is	present	in	the	population	during	years	with	R0	

greater	than	one.		A	third	possibility	for	the	discrepancy	is	that	these	locations	may	

have	had	some	form	of	permanent	water	source	not	accounted	for	in	our	

simulations	that	could	serve	as	mosquito	breeding	habitat	in	the	absence	of	rain-fed	
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water	pools,	such	as	oases.		This	is	likely	to	be	true	of	M3,	which	lies	on	the	banks	of	

a	tributary	to	the	Niger	River.	

	

Comparison	to	data	from	the	Garki	Project	

	

The	Garki	Project	was	a	major	effort	to	study	malaria	transmission	and	control	by	

the	World	Health	Organization	and	the	Government	of	Nigeria	from	1969	to	1976.		

The	study	location	corresponds	with	site	NA1	shown	in	Fig.	1	in	the	main	text.		The	

goals	of	the	project	were	to	study	the	epidemiology	of	malaria	transmission	in	the	

Sudan	Savanna	climate	zone,	test	intervention	methods,	and	develop	a	model	of	

disease	transmission31.		The	study	included	four	tiers	of	villages.		Malaria	control	

interventions	were	applied	to	the	inner	villages.		Villages	outside	of	the	intervention	

zone	were	monitored	as	non-intervention	comparison	locations.		Mosquitoes	were	

captured	every	5	weeks	during	the	dry	season	and	every	2	weeks	during	the	wet	

season	using	human	landing	catches.		Human	bait	collectors	were	stationed	at	

indoor	and	outdoor	locations	for	the	duration	of	the	night	and	collected	mosquitoes	

attempting	a	blood	meal.		Mosquitoes	were	also	captured	using	pyrethrum	spray	

collections	and	light	traps.		Captured	mosquitoes	were	counted	and	analyzed	in	

order	to	estimate	the	mosquito	biting	rate,	EIR,	mosquito	age,	and	the	sporozoite	

rate	(proportion	of	mosquitoes	infected	by	the	plasmodium	parasite).		Age-specific	

malaria	prevalence	was	measured	for	selected	villages	every	10	weeks	using	

standard	blood	smear	methods.		Seroimmunological	surveys	were	conducted	every	

6	months	to	test	for	the	presence	of	antibodies	to	Plasmodium	falciparum	and	other	

forms	of	the	malaria	parasite	within	the	human	population.	

	

Supplementary	Fig.	4	shows	a	comparison	between	data	on	mosquito	biting	rates	

collected	from	Kwaru	village	outside	of	the	intervention	area	and	the	corresponding	

variable	simulated	by	HYDREMATS	in	our	15-year	baseline	simulation.		Because	the	

high-resolution	environmental	data	sources	required	for	HYDREMATS	simulations	

did	not	overlap	with	the	Garki	Project	time	period,	we	compared	the	results	to	the	

range	of	values	simulated	in	our	15-year	simulation.		As	shown	in	the	figure,	the	
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model	reproduces	the	general	characteristics	and	timing	of	the	seasonal	cycle.		Our	

simulation	results	show	mosquito	biting	activity	to	be	restricted	to	the	period	

between	May	and	early	November,	corresponding	to	the	availability	of	rain-fed	

water	pools	required	for	mosquito	breeding.	The	observations	show	occasional	

mosquito	bites	outside	of	this	period;	these	may	have	been	mosquitoes	that	had	

taken	refuge	inside	of	homes,	or	were	engaging	in	low-level	localized	breeding	in	a	

permanent	water	source	not	represented	in	our	model.		Our	simulations	also	

include	low	levels	of	mosquitoes	to	sustain	the	mosquito	population	over	the	dry	

season;	however,	these	mosquitoes	are	assumed	to	enter	an	aestivation	state	and	do	

not	engage	in	blood	seeking	activity	until	the	beginning	of	the	following	wet	

season32.			

	

The	top	panel	in	Supplementary	Fig.	5	shows	prevalence	by	age	for	a	cross-section	

of	the	population	in	the	non-intervention	villages	measured	in	October,	1971,	at	the	

end	of	rainy	season.		The	observations,	in	red,	show	a	characteristic	age	profile	of	

malaria	prevalence.		Young	children	become	infected	at	high	rates	until	they	begin	

to	develop	partial	immunity	to	disease.		This	explains	the	sharp	decrease	in	

prevalence	between	the	first	few	years	of	life	and	early	adolescence.		While	the	exact	

shape	and	magnitude	of	the	prevalence	profile	varies	by	year	and	by	location,	

HYDREMATS	succeeds	in	simulating	the	basic	characteristics	of	the	age	profile.	In	

this	simulation,	children	appear	to	develop	immunity	several	years	faster	than	the	

observed	population.	

	

Finally,	the	bottom	panel	of	Supplementary	Fig.	5	shows	the	seasonal	cycle	of	

malaria	prevalence	in	the	Garki	district.		The	red	and	blue	lines	show	observed	

prevalence	sampled	in	two	non-intervention	villages	over	four	years	(1971-1974),	

and	simulated	prevalence	in	the	same	area	between	1998	and	2012.		While	the	

specific	prevalence	value	varies	from	year	to	year,	HYDREMATS	correctly	simulates	

the	timing	of	the	seasonal	peak	around	early	October,	and	simulates	reasonable	

levels	of	prevalence.	
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The	simulations	showed	much	higher	interannual	variability	than	the	observations.		

However,	the	observations	span	only	four	years,	with	relatively	low	and	stable	

rainfall	(between	300-600	mm	/	year).		By	contrast,	mean	annual	rainfall	between	

1998-2012	was	765	mm,	with	a	standard	deviation	of	168	mm,	and	as	much	as	586	

mm	difference	between	consecutive	years.		It	is	therefore	not	unreasonable	that	we	

should	see	such	high	variability	in	simulated	malaria	prevalence	over	this	time.			Our	

simulations	also	tend	to	underestimate	malaria	prevalence	in	the	dry	season.		One	

possible	explanation	for	this	is	that	our	simulated	population	had	higher	immunity	

levels	than	the	observed	population,	causing	infections	to	clear	more	rapidly.		There	

was	also	evidence	of	low	levels	of	malaria	transmission	occurring	during	the	dry	

season,	which	generally	did	not	occur	in	the	model	simulations	31.					

	

	

Regression	relationships	between	climate	and	malaria	transmission	indices	

We	developed	a	linear	regression	model	for	each	of	the	malaria	transmission	

indices.		We	broke	annual	rainfall	into	segments	that	accounted	for	threshold	effects	

and	other	nonlinearities	between	rainfall	and	predictor	variables.		For	R0,	the	slope	

of	the	least-squares	regression	line	was	greater	for	annual	rainfall	values	less	than	

690	mm	than	it	was	for	higher	values.		In	years	with	rainfall	less	than	690mm,	

mosquitoes	were	constrained	by	the	availability	and	persistence	of	sufficiently	

persistent	developmental	habitats.		Additional	rainfall	made	it	more	likely	that	a	

water	pool	will	last	long	enough	for	larvae	to	emerge	as	adults,	thus	increasing	R0.		

In	years	with	heavy	rainfall,	mosquitoes	had	many	water	pools	available	for	

breeding,	so	the	abundance	was	less	sensitive	to	increases	in	rainfall.			Excess	

rainfall	can	lead	to	pools	that	are	too	deep	for	Anopheles	gambiae	s.l.	mosquitoes,	

which	prefer	to	breed	in	shallow	areas.		Larval	mosquito	abundance	is	also	

regulated	by	the	carrying	capacity	of	developmental	habitats	in	years	with	ample	

rainfall	and	density-dependent	mortality.	
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The	relationship	between	rainfall	and	EIR	had	two	distinct	segments.		Rainfall	was	

linearly	correlated	to	the	logarithm	of	EIR	for	annual	rainfall	up	to	950	mm.		Beyond	

this	threshold,	the	two	were	no	longer	correlated,	both	because	of	the	waning	

influence	of	rainfall	on	mosquito	numbers	at	high	rainfall,	and	also	because	

prevalence	did	not	increase	with	rainfall	beyond	this	point.	

The	influence	of	rainfall	on	prevalence	and	the	immunity	index	had	three	distinct	

segments.		For	rainfall	values	less	than	415	mm	per	year,	environmental	and	

entomological	conditions	were	generally	insufficient	to	sustain	transmission,	

resulting	in	near-zero	values	of	EIR.		There	was	a	loose	linear	relationship	between	

rainfall	and	malaria	indices	for	annual	totals	between	415	mm	and	950	mm.		There	

was	almost	no	correlation	between	rainfall	greater	than	950	mm	and	malaria	

transmission,	due	to	the	finite	number	of	susceptible	individuals,	the	upper	limit	of	

acquiring	immunity,	and	the	decreased	sensitivity	of	mosquitoes	to	high	levels	of	

rainfall.	

	

Sensitivity	of	results	to	climate	change	projections	

We	investigated	the	sensitivity	of	our	results	to	the	choice	of	climate	change	

projections	by	1)	extending	our	modeling	study	to	include	two	additional	GCMs:	

CanESM2	and	MIROC5	and	2)	demonstrating	how	Fig.	4	(main	text)	can	be	used	to	

estimate	the	sensitivity	of	results	to	differences	in	climate	projections		

	

1)	In	addition	to	the	two	GCMs	used	in	our	study	(CCSM4	and	MPI-ESM-MR),	we	

conducted	simulations	using	two	additional	GCMs	to	investigate	the	sensitivity	of	

our	results	to	the	choice	of	climate	projection.		The	four	models	show	a	general	

pattern	of	drying	in	the	western	portion	of	our	study	area,	and	wetting	in	the	

eastern	and	southern	areas	(Supplementary	Fig.	7).		The	magnitude	of	these	

changes,	as	well	as	the	extent	of	the	area	with	predicted	drying,	varies	by	model.		

This	pattern	of	rainfall	change	is	consistent	with	a	substantial	majority	of	CMIP5	
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models	and	has	been	identified	as	a	robust	feature	of	future	climate	in	this	region	
14,24,33,34.		

	

Temperatures	generally	increase	more	in	the	west	than	in	the	east,	consistent	with	

the	spatial	extent	of	predicted	changes	in	precipitation	(Supplementary	Fig.	8).		The	

four-model	mean	shows	temperature	increases	between	2.5	and	5.8	degrees	Celsius	

of	our	study	area.		MIROC5	and	CCSM4	are	substantially	cooler	than	the	mean,	while	

CanESM2	projects	temperature	increases	over	8	degrees	Celsius	in	the	western	

Sahel.			

MIROC5	is	known	to	produce	one	of	the	coolest	and	wettest	projections	over	the	

Sahel	(Subregions	ii	and	iii)	within	the	CMIP5	ensemble;		most	CMIP5	models	

project	higher	temperatures,	and	rainfall	within	30%	of	current	values14.		In	this	

regard,	our	simulations	results	from	MIROC5	can	be	seen	as	a	worst-case	scenario	in	

terms	of	potential	increases	in	malaria	transmission.		By	contrast,	CanESM2	shows	a	

considerably	stronger	drying	and	warming	signal	than	the	other	three	models.		The	

results	of	our	simulations	using	all	four	climate	models	are	shown	in	Table	4.	

	

2)	The	uncertainty	in	climate	projections	was	a	motivating	factor	in	our	

development	of	the	relationships	linking	rainfall	and	temperature	to	malaria	

transmission	indices,	which	use	simulations	driven	by	over	one	thousand	

combinations	of	annual	climate	data	to	explore	a	wide	range	of	temperature	and	

rainfall	conditions	that	may	be	observed	in	this	region.		The	resulting	plots	shown	in	

Fig.	4,	as	well	as	the	regression	equations	outlined	in	the	Supplementary	materials,	

can	be	used	to	estimate	the	effects	of	different	climate	change	scenarios	on	malaria	

transmission	throughout	this	region.			

	

In	Supplementary	Fig.	10,	we	show	the	current	and	future	values	of	mean	annual	

rainfall	and	wet-season	temperature,	superimposed	on	the	scatterplots	of	malaria	

transmission	indices	in	rainfall-temperature	space	shown	in	Fig.	4.		The	yellow	

points	show	the	current	climate,	and	the	green	points	show	the	future	climate	as	
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projected	by	each	of	our	four	climate	models.		The	sensitivity	of	our	results	to	

climate	projections	can	be	estimated	by	considering	the	spread	of	the	green	points,	

and	the	values	of	Ro	and	malaria	prevalence	in	the	underlying	scatterplots.		This	

method	can	also	be	used	to	estimate	the	climate	change	impacts	on	malaria	

transmission	for	additional	locations	within	study	area,	as	well	as	the	impacts	of	

different	climate	projections.	Most	significant	would	be	changes	that	cause	the	

movement	from	the	high	transmission	(red)	to	low	transmission	(blue)	regions	of	

rainfall-temperature	space.		It	is	important	to	note	that	while	each	location	is	shown	

as	a	single	point,	in	reality	we	would	observe	a	cloud	of	points	surrounding	the	

mean	due	the	high	interannual	variability	in	rainfall	and	temperature,	as	shown	in	

Fig.	3b	and	3c.			

	

In	Sub-region	i,	both	increased	temperature	and	decreased	rainfall	work	to	reduce	

malaria	transmission.		A	future	climate	that	was	substantially	wetter	could	

potentially	lead	to	increases	in	malaria	prevalence;	however,	such	a	future	is	

unlikely	given	the	near-consensus	of	current	generation	climate	models	of	a	dryer	

future	in	this	region	14.	

	

In	Sub-region	ii,	any	future	warming	leads	to	conditions	that	exceed	the	limits	of	

mosquito	survival;	no	amount	of	additional	rainfall	could	make	this	area	suitable	for	

malaria	transmission.	

	

As	stated	in	the	main	text,	future	malaria	transmission	is	most	uncertain	in	Sub-

region	iii,	due	to	the	competing	forces	of	increased	mosquito	breeding	through	

higher	rainfall	and	shorter	mosquito	lifespan	through	increased	temperatures.		

Furthermore,	this	region	sits	close	to	the	threshold	of	malaria	transmission;	small	

changes	can	push	the	system	in	or	out	of	the	epidemic	region.	This	region	is	

therefore	the	most	sensitive	to	the	selection	of	climate	projections.		In	our	

simulation	results,	the	relatively	cool	and	wet	future	predicted	by	MIROC5	led	to	

increased	prevalence	at	site	N2.	
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Finally,	Sub-region	4	is	currently	deep	in	the	high-transmission	area	of	rainfall-

temperature	space.		Modest	changes	in	climate	are	not	sufficient	to	significantly	

change	frequency	or	severity	of	epidemics.		However	the	very	strong	drying	and	

warming	signal	predicted	by	CanESM2	was	enough	to	cause	a	significant	decrease	in	

malaria	prevalence.	
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Supplementary	Figure	1	
Schematic	of	the	processes	linking	climate	change	to	malaria	transmission.		Rainfall	
primarily	affects	mosquito	breeding,	while	temperature	affects	mosquito	longevity	
and	parasite	development	rate.	
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Supplementary Figure 2 
Data sampling locations in Banizoumbou, Niger.  Reprinted from Bomblies et al26. The 
hydrology component of HYDREMATS was rigorously compared to field observations 
in Bomblies et al26, showing that the model very closely reproduced observed volumetric 
water content is soil, as well as location, depth and persistence of water pools. 
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Supplementary Figure 3 
Top: Malaria prevalence in children aged 2-10 in 2010 estimated by Malaria Atlas Project 30 
(colored surface) and peak equilibrium prevalence simulated by HYDREMATS (colored 
circles).  Bottom left: Simulated prevalence in children aged 2-10 for equilibrium simulation 
compared to MAP estimate.  Each point refers to one of the twelve locations in the top panel.  
Bottom right: Simulated prevalence in children aged 2-10 over a 15-year simulation. Error bars 
on for the 15-year simulation show one standard deviation from the mean. 
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Supplementary Figure 4 
Mosquito biting rate in Kwaru, Nigeria, one of the non-intervention comparison villages 
in the Garki project31.  Colored lines show captured mosquitoes for 3 consecutive years.  
Grey lines show simulation results. 
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Supplementary Figure 5 
Top: Malaria prevalence by age group in October, 1971.  The observations show that 
malaria prevalence peaks in childhood and gradually decreases through adolescence, with 
dramatically lower prevalence rates in adults.  This is the result of semi-protective 
immunity, which is gradually acquired through repeated malaria infections.  The blue 
bars show a cross-section of the simulated model population, showing a similar pattern of 
prevalence vs. age as older individuals are protected by higher levels of immunity.  
Bottom: Observed and simulated seasonal cycle of malaria prevalence in the Garki 
district.  Grey lines show simulated malaria prevalence between 1998-2012.  The red and 
blue lines show observed malaria prevalence sampled at two control villages over the 
period 1971-1974.   
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Supplementary Figure 6 
Mean annual rainfall [mm] during the period 1930-2005.  The top-left panel shows 
observational data from CRU TS3.21.  The remaining panels show rainfall simulated in 
the historical runs of the four climate models used in this study. 
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Supplementary Figure 7 
Predicted change in rainfall by 2070-2100 as a percentage of 1975-2005 mean rainfall 
under RCP8.5.   
Predictions are shown for the following CMIP5 models: CCSM4, MPI-ESM-MR, 
CanESM2 and MIROC5.  The bottom-center plot shows the percent change averaged 
between CCSM4 and MPI-ESM-MR models, and the bottom-right plot shows the 
average prediction over all 4 CMIP5 models. 
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Supplementary Figure 8 
Predicted increase in July-August-September mean temperature between 1975-2005 and 
2070-2100, in degrees Celsius, under RCP8.5.  Predictions are shown for the following 
CMIP5 models: CCSM4, MPI-ESM-MR, CanESM2 and MIROC5.  The bottom-center 
plot shows the percent change averaged between CCSM4 and MPI-ESM-MR models, 
and the bottom-right plot shows the average prediction over all 4 CMIP5 models. 
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Supplementary	Figure	9	
	
A)	The	colors	on	the	map	indicates	the	changes	in	average	rainfall	between	current	
(1975-2005)	and	future	(2070-2100)	conditions,	averaging	predictions	between	the	
two	climate	models.		The	labeled	rectangles	group	our	study	area	by	response	to	
climate	change.		B	and	C)	Detailed	results	for	observed	changes	in	R0	and	malaria	
prevalence	are	shown	for	two	sites,	M7	(Fig	3Sb)	in	the	south	and	N1	(Fig.	3SC)	in	
the	north.	The	top	rows	show	log10	(R0)	and	the	bottom	row	shows	malaria	mean	
prevalence	in	children	aged	2-10.		Open	circles	indicate	model	results	in	the	current	
climate,	crosses	show	results	with	future	climate	conditions	as	predicted	by	CCSM4	
and	triangles	indicate	results	using	climate	predictions	from	MPI-ESM-MR.		The	left	
panels	are	modeling	results	from	the	detailed	HYDREMATS	simulations.		The	right	
panels	apply	a	regression	relationship	to	annual	rainfall	and	mean	wet	season	
temperature	data	from	CRU	TS3.1.	
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Supplementary	Figure	10	
Migration	of	study	sites	through	rainfall-temperature	space	under	different	
projections	of	future	climate.		The	triangular	markers	in	each	subplot	show	the	
location	of	a	study	site	in	rainfall-temperature	space	under	current	(yellow)	and	
future	(green)	conditions	under	projections	from	four	climate	models:	CCSM4,	MPI-
ESM-MR,	CanESM2	and	MIROC5.		The	markers	are	overlaid	on	plots	of	log(R0)	(left	
column)	and	malaria	prevalence	in	ages	2-10	(right	column).		The	spread	between	
green	markers	estimates	the	uncertainty	in	future	malaria	transmission	due	to	
differences	in	climate	projections.	
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Supplementary Table 1: HYDREMATS simulation results for baseline period 
(1975-2005) and future conditions (2070-2100). We show results for simulations using 
climate projections from the two GCMs selected for our study (CCSM4 and MPI-ESM-
MR), as well as two additional models as a sensitivity analyses (CanESM2 and 
MIROC5).  Red values indicate statistically significant decreases from baseline while 
green values indicate statistically significant increases.	
 
Proportion	of	years	with	R0	>	1	(95%	CI)	

	 	 	 	Sub-
region	 	Site	 	Base	 	CCSM4	 	MPI-ESM-MR	 	CanESM	 	MIROC5	
i			 	M3		 0.20	(0.04,0.48)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.27	(0.08,0.55)	
i			 	S1		 0.73	(0.45,0.92)	 0.27	(0.08,0.55)	 0.07	(0.00,0.32)	 0.00	(0.00,0.22)	 0.40	(0.16,0.68)	
i			 	M4		 0.87	(0.60,0.98)	 0.53	(0.27,0.79)	 0.33	(0.12,0.62)	 0.00	(0.00,0.22)	 0.93	(0.68,1.00)	
ii		 	M1		 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	
ii		 	M2		 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	
ii		 	N1		 0.13	(0.02,0.40)	 0.07	(0.00,0.32)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	 0.00	(0.00,0.22)	
iii	 	N2		 0.53	(0.27,0.79)	 0.67	(0.38,0.88)	 0.07	(0.00,0.32)	 0.40	(0.16,0.68)	 1.00	(0.78,1.00)	
iii	 	N3		 1.00	(0.78,1.00)	 0.93	(0.68,1.00)	 0.33	(0.12,0.62)	 0.53	(0.27,0.79)	 1.00	(0.78,1.00)	
iv		 	M5		 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	
iv		 	M6		 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	
iv		 	NA1	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	
iv		 	M7		 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	 1.00	(0.78,1.00)	

	 	 	 	 	 	 	Log_10(R0)	(95%	
CI)	

	 	 	 	 	Sub-
region	 	Site	 	Base	 	CCSM4	 	MPI-ESM-MR	 	CanESM	 	MIROC5	
i			 	M3		 -0.3	(-0.7,-0.0)	 -2.1	(-2.4,-1.7)	 -1.5	(-1.8,-1.1)	 -2.4	(-2.7,-2.0)	 -0.2	(-0.4,-0.0)	
i			 	S1		 0.7	(0.2,1.1)	 -0.5	(-0.9,-0.0)	 -1.5	(-2.0,-1.0)	 -2.8	(-3.0,-2.5)	 -0.2	(-0.6,0.1)	
i			 	M4		 1.0	(0.7,1.4)	 -0.0	(-0.5,0.5)	 -0.3	(-0.7,0.1)	 -2.4	(-2.7,-2.1)	 0.8	(0.5,1.0)	
ii		 	M1		 -1.9	(-2.4,-1.4)	 -2.8	(-3.0,-2.6)	 -3.0	(-3.0,-3.0)	 -3.0	(-3.0,-3.0)	 -2.5	(-2.8,-2.2)	
ii		 	M2		 -2.2	(-2.7,-1.7)	 -2.7	(-3.0,-2.4)	 -2.8	(-3.0,-2.6)	 -2.9	(-3.1,-2.8)	 -1.9	(-2.2,-1.6)	
ii		 	N1		 -0.7	(-1.1,-0.4)	 -1.3	(-1.7,-0.9)	 -2.2	(-2.6,-1.7)	 -2.2	(-2.6,-1.7)	 -0.8	(-1.0,-0.6)	
iii	 	N2		 0.0	(-0.3,0.3)	 0.2	(-0.2,0.6)	 -0.8	(-1.1,-0.5)	 -0.1	(-0.3,0.1)	 1.0	(0.8,1.3)	
iii	 	N3		 1.0	(0.7,1.3)	 0.9	(0.6,1.1)	 -0.2	(-0.5,0.0)	 -0.1	(-0.4,0.1)	 1.2	(1.1,1.4)	
iv		 	M5		 1.6	(1.5,1.8)	 1.4	(1.2,1.6)	 1.2	(0.9,1.4)	 1.2	(0.9,1.5)	 1.5	(1.3,1.6)	
iv		 	M6		 2.0	(1.9,2.2)	 2.1	(1.9,2.2)	 1.9	(1.8,2.0)	 1.5	(1.4,1.6)	 2.3	(2.2,2.4)	
iv		 	NA1	 1.6	(1.3,1.8)	 1.7	(1.6,1.9)	 1.4	(1.1,1.7)	 1.7	(1.5,1.9)	 2.0	(1.9,2.1)	
iv		 	M7		 1.9	(1.8,2.0)	 2.1	(2.0,2.3)	 1.9	(1.8,2.1)	 1.6	(1.5,1.6)	 2.4	(2.2,2.5)	

	 	 	 	 	 	 	Peak	Prevalence	in	children	aged	2-10	
(95%	CI)	

	 	 	 	Sub-
region	 	Site	 	Base	 	CCSM4	 	MPI-ESM-MR	 	CanESM	 	MIROC5	
i			 	M3		 2%	(1,3)	 3%	(2,4)	 2%	(1,3)	 3%	(1,5)	 3%	(1,4)	
i			 	S1		 11%	(2,20)	 2%	(1,2)	 2%	(1,2)	 2%	(2,3)	 2%	(1,2)	
i			 	M4		 46%	(34,58)	 9%	(5,14)	 4%	(2,6)	 9%	(5,14)	 17%	(7,28)	
ii		 	M1		 1%	(1,1)	 1%	(1,1)	 1%	(1,1)	 2%	(1,2)	 1%	(1,2)	
ii		 	M2		 2%	(1,3)	 2%	(1,3)	 2%	(1,3)	 3%	(2,5)	 2%	(1,4)	
ii		 	N1		 2%	(1,3)	 2%	(1,3)	 2%	(1,2)	 2%	(1,4)	 2%	(0,4)	
iii	 	N2		 2%	(1,4)	 4%	(1,6)	 2%	(1,4)	 4%	(0,8)	 19%	(8,29)	
iii	 	N3		 23%	(11,35)	 13%	(10,16)	 4%	(2,6)	 4%	(0,8)	 26%	(19,33)	
iv		 	M5		 42%	(26,57)	 43%	(26,60)	 30%	(13,47)	 27%	(8,46)	 29%	(18,40)	
iv		 	M6		 66%	(57,75)	 67%	(59,76)	 64%	(55,74)	 33%	(18,48)	 69%	(61,78)	
iv		 	NA1	 48%	(29,67)	 66%	(52,80)	 54%	(38,70)	 55%	(38,71)	 66%	(51,80)	
iv		 	M7		 65%	(55,74)	 67%	(57,78)	 66%	(57,76)	 35%	(19,51)	 69%	(59,79)	
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Supplementary Table 2:  Coefficient of determination (R2) values for annual 
rainfall, TJAS and indices of malaria transmission 

		 TJAS	 log10	(R0)	 log10	(EIR)	 Pr	2-10	 Imm	
Annual	
rainfall	 0.51	 0.72	 0.81	 0.62	 0.68	

TJAS	 		 0.67	 0.64	 0.52	 0.42	
log10	(R0)	 		 		 0.87	 0.51	 0.53	
log10	(EIR)	 		 		 		 0.7	 0.81	
Pr	2-10	 		 		 		 		 0.65	

	 	 	 	 	 	
	

	
All	pairs	of	variables	are	correlated	with	significance	levels	p	<<	0.0001	
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Supplementary Table 3: Coefficients and statistics of regression model.   

Regression	models	take	the	form	of	f(TJAS,rain)=a+b*TJAS+c*rain/1000	
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Supplementary Table 4: Summary of data sources 
	

	 Data	source	 Spatial	
resolution	

Temporal	
resolution	

Reference	

Baseline	
Climatology	

	 	 	 	

temperature	 CRU	TS	3.21	 0.5	x	0.5	
degree	

1	month				
1901-2012	

35	

rainfall	 CRU	TS	3.21	 0.5	x	0.5	
degree	

1	month				
1901-2012	

35	

Meteorological	
Inputs	for	
HYDREMATS	
Simulation	

	 	 	 	

precipitation	 CMORPH	version	1.0	 ~8km	 30	min							
1998-present	

1	

temperature	 ERA-Interim	 .75	x	.75	
degree	

3	hour								
1979-present	

8	

wind	speed	 ERA-Interim	 .75	x	.75	
degree	

3	hour								
1979-present	

8	

wind	direction	 ERA-Interim	 .75	x	.75	
degree	

3	hour									
1979-present	

8	

surface	radiation	 ERA-Interim	 .75	x	.75	
degree	

3	hour								
1979-present	

8	

Other	model	inputs	 	 	 	 	

soil	type	 Harmonized	World	Soil	
Database	

~1km	 Static	 10	

vegetation	 University	of	Maryland	
Landcover	

1km	 Static	 9	

topography	 Computed	from	Envisat	
synthetic	aperture	radar	
and	ground	survey	

10	m	 Static	
36	

household	locations	 Quickbird	image	 0.6	m	 Static	 26	
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Supplementary Table 5: Performance of CMIP5 Climate Models 
 

Model	Name	 Rainfall	Score	 Temperature	Score	 Total	

Zone	1	 Zone	2	 Zone	3	 Zone	1	 Zone	2	 Zone	3	

BNU-ESM	 1	 1	 1	 1	 1	 1	 6	

MIROC5	 1	 1	 		 1	 1	 1	 5	

MPI-ESM-MR			 1	 		 1	 1	 1	 		 4	

CANESM2	 		 		 		 1	 1	 1	 3	

CCSM4	 1	 1	 1	 		 		 		 3	

FGOALS-g2	 -1	 1	 		 1	 1	 		 2	

CESM1-CAM5		 		 1	 1	 		 		 		 2	

MIROC-ESM-CHEM			 		 		 		 		 		 1	 1	

FIO-ESM			 1	 		 		 		 		 		 1	

BCC-CSM1-1	 		 		 		 		 		 1	 1	

CNRM-CM5	 -1	 1	 1	 		 		 		 1	

CSIRO-Mk3-6-0			 -1	 -1	 		 1	 1	 1	 1	

CMCC-CM	 		 		 		 		 		 		 0	

GFDL-CM3	 		 		 		 		 		 		 0	

GISS-E2-H	 		 		 		 		 		 -1	 -1	

HadGEM2-AO	 		 		 		 -1	 		 		 -1	

ACCESS	 		 -1	 -1	 		 		 		 -2	

MRI-CGCM3			 		 -1	 -1	 		 -1	 		 -3	

EC-EARTH	 -1	 		 1	 -1	 -1	 -1	 -3	

IPSL-CM5A-MR			 		 		 		 -1	 -1	 -1	 -3	

GFDL-ESM2M	 -1	 -1	 -1	 		 		 		 -3	

inmcm4			 1	 		 -1	 -1	 -1	 -1	 -3	

HadGEM2-CC	 		 -1	 -1	 -1	 -1	 -1	 -5	
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