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ABSTRACT

The natural variability in the annual flow of the Nile is significantly regulated by the El Niño–Southern
Oscillation (ENSO). In this paper, several sources of information are combined, including ENSO, rainfall over
Ethiopia, and the recent history of river flow in the Nile, in order to obtain accurate forecasts of the Nile flood
at Aswan. The Bayesian theorem is used in developing the discriminant forecasting algorithm. Conditional
categoric probabilities are used to describe the flood forecasts, and a synoptic index is defined to measure the
forecasts’ skill. The results presented show that ENSO information is the only valuable predictor for the long-
range forecasts (lead time longer than the hydrological response timescale, which is 2–3 months in this study).
However, the incorporation of the rainfall and river flow information in addition to the ENSO information
significantly improves the quality of the medium-range forecasts (lead time shorter than the hydrological response
timescale).

1. Introduction

The Nile, running for 6690 km, is one of the longest
rivers in the world. Three main tributaries, the Blue Nile,
White Nile, and Atbara River, contribute 70%, 20%,
and 10%, respectively, of total Nile discharge (Hurst
1957). Covering most of the northeastern quarter of Af-
rica, the Nile basin has nurtured one of the most ancient
human civilizations. The Nile’s flow is the main source
of water in Egypt. In the late nineteenth century, from
1860–80, four serious floods caused severe property
damage and loss of life in the Nile basin (Hurst 1957).
However, in the present century, the Nile basin area has
been suffering from water deficits. To protect this region
against droughts, as well as possible floods, the High
Aswan Dam was constructed in the 1960s. The most
important function of the reservoir at Aswan is to hold
back water from the flood season for use in the low
flow season, and from wet years to supplement the water
supply in drought years. According to the historical rec-
ord, the flood peak in the Nile often occurs in September
(Fig. 1a). This causes the months June, July, and August
to be a critical time for the reservoir operation. The fact
that these months are also important irrigation time
makes reservoir operations more complex. To make full
use of the often limited water, and to operate the res-
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ervoir in an optimal way, a high quality medium- to
long-range forecast of the Nile flood is necessary. In
this paper, we use the term ‘‘medium range’’ to describe
forecasts with a lead time comparable to the timescale
of the hydrological response, and the term ‘‘long range’’
to describe forecasts with a lead time longer than the
hydrological response timescale. Here, the hydrological
response time is the time lag between the precipitation
event over the Nile catchment and the runoff delivered
to Aswan station, which is about 2–3 months. The lead
time is defined relative to the time of flood peak at
Aswan station, which usually occurs in September.

The El Niño–Southern Oscillation (ENSO) phenom-
enon plays an important role in the medium- to long-
range forecasts that we will present in this study. Pre-
vious studies have shown that ENSO is correlated with
the interannual variability of rainfall and river flow in
several regions of the world. An early study by Bliss
(1925) showed that Nile flow is correlated with the pres-
sure fluctuations at Port Darwin in Australia, that is, the
Southern Oscillation. The cross-spectral analysis by
Richey et al. (1989) showed a significant coherency
between Amazon River discharge and ENSO. Accord-
ing to this study, low flow in the Amazon River tends
to take place following major El Niño events. Kahya
and Dracup (1993, 1994) and Dracup and Kahya (1994)
studied the influence of ENSO on the U.S. streamflow,
and found that the river flow in the United States, es-
pecially in the north-central region and the Pacific
Northwest, does respond to the El Niño–La Niña events.
Piechota and Dracup (1996) concentrated on the
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FIG. 1. The seasonal cycles for (a) Nile flow at Aswan and (b)
rainfall over Ethiopia. Rainfall is measured in mm month21, and river
flow is in km3 month21.

droughts in the United States and found that El Niño
has the strongest effect on extreme droughts in the Pa-
cific Northwest. ENSO was also found to be correlated
with rainfall and river flow in Australia by several pre-
vious studies (e.g., McBride and Nicholls 1983; Ro-
pelewski and Halpert 1987, 1989). The study by Ro-
pelewski and Halpert (1987, 1989) also showed that the
Ethiopia Plateau is one of the several regions in the
world where interannual fluctuations of rainfall are as-
sociated with ENSO. Camberlin (1995) confirmed this
result by showing that drought conditions in Ethiopia
are associated with El Niño events. The association be-
tween ENSO and the rainfall over Ethiopia contributes
to the teleconnection between ENSO and Nile discharge,
since the Blue Nile, which is the largest tributary of the
Nile, drains the Ethiopian Plateau. According to Amar-
asekera et al.’s (1997) analysis, the correlation between
ENSO and the discharge of the Nile is the most robust
among four major tropical rivers: the Nile, Amazon,

Congo, and Parana. This correlation is the basis of the
proposed methodology for forecasting the Nile flood
using the ENSO information.

Traditional river flow forecasting (e.g., Singh 1995)
has a very short lead time, usually shorter than the hy-
drological response time. Since the 1980s, due to the
successful ENSO predictions (Cane et al. 1986; Zebiak
and Cane 1987) with a lead time of 1 yr or even longer,
long-range river flow forecasting has been made pos-
sible using the ENSO–river flow teleconnection. When
the predicted ENSO index is used as the river flow
predictor, the forecasting lead time could be much lon-
ger than the hydrological response timescale. Simpson
et al. (1993a,b) used ENSO to forecast the annual dis-
charge of Australian rivers, with a lead time up to 1 yr.
These studies brought a new perspective to the river
flow forecasting. Similarly, Eltahir (1996) examined the
significant correlation between ENSO and Nile dis-
charge, and used ENSO as a predictor for his long-range
forecasting for the Nile floods. In all these studies,
ENSO is the only predictor for the river flow. To im-
prove the forecast skill, additional information, if avail-
able, should be incorporated into the forecasting pro-
cess. Precipitation over the drainage area of the river,
river flows observed prior to the forecasting time, and
any other relevant factor could be valuable sources of
information for the river flow forecasting. The objective
of this study is to develop a forecasting algorithm that
could make use of several sources of information. Our
predictand here is the annual flood of the Nile and the
predictors include ENSO, rainfall over Ethiopia, and the
prior streamflow of the Nile at Aswan.

For any forecasting problem, there are two frequently
used forecasting approaches: the linear regression and
the discriminant prediction. The regression approach,
with single or multiple predictors, uses the best-fit re-
lationship to estimate the predictand, while the discrim-
inant approach estimates the probabilities that the pre-
dictand will fall into a set of prescribed categories. The
statistical techniques of these two methods are described
in Parsons (1978) and Afifi and Azen (1979). Which
method to use usually depends on the particular pre-
diction problem of interest. For purposes of operational
decision-making, for example, reservoir operations, the
most desirable information would be the full description
of the uncertainties, that is, the probability distribution
over the possible events for given values of the predic-
tors. The operational decision can be made efficiently
from a measure of the categorical probabilities (Miller
1962). In this study, we take the discriminant prediction
approach, which has been frequently used in hydrolog-
ical forecasts (Folland et al. 1991; Simpson et al.
1993a,b; Eltahir 1996).

In the next six sections, we will present our fore-
casting algorithm and its application in the annual flood
forecasting for the Nile. The forecasting algorithm is
based on the discriminant approach and is developed
using the Bayesian theorem. As mentioned above, our
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FIG. 2. Time series of the normalized anomalies of Sep–Nov ENSO
index (solid line) and the annual Nile discharge (dash line). For the
convenience of comparison, the two variables are plotted using op-
posite coordinates. The ‘‘normalized anomalies’’ stand for the anom-
alies divided by the standard deviation.

forecasts for the Nile flood combine the information
from three sources: ENSO, rainfall over Ethiopia, and
the prior streamflow of the Nile at Aswan. The data
used in this study are described in section 2, followed
by a spectral and cross-spectral analysis in section 3.
Section 4 introduces the forecasting methodology. Sec-
tion 5 details the application of the Bayesian theorem
and the proposed algorithm. Section 6 presents the re-
sults, including calibration and verification of the al-
gorithm. The conclusions are presented in section 7.

2. Data description

The data we use in this study include data on the
Nile’s flow, rainfall over the Ethiopian Plateau, and the
ENSO index. The river flow data is the naturalized
streamflow at Aswan, from January 1872 to December
1986. The seasonal cycle of the river flow data is shown
in Fig. 1a. The river flow in May is the lowest of the
whole year, and the flow peak occurs in September. Here
we define 1 June as the beginning of a hydrological year
and 31 May as the end. The annual Nile flood is defined
as the accumulated river flow in each hydrological year.
The rainfall data is taken from a global monthly rainfall
dataset, gridded at a resolution of 3.758 lat 3 2.58 long
(Hulme 1995). This dataset covers the years from 1900
to 1994. We use the average in the region 7.58–12.58N,
37.58–41.258E over the Ethiopian Plateau, which covers
most of the Blue Nile catchment. Figure 1b shows the
rainfall seasonal cycle, with the maximum rainfall tak-
ing place in July. Comparison between Figs. 1a and 1b
suggests that the hydrological response timescale is ap-
proximately 2–3 months. The ENSO index is derived
from a monthly series of the sea surface temperature
(SST) anomaly with respect to the SST climatology
(Wright 1989). Following Eltahir (1996), we use the
SST anomaly averaged over regions 68–28N, 1708–
908W; 28N–68S, 1808–908W; and 68–108S, 1508–1108W
as the monthly ENSO index. In forecasting the Nile
floods, the ENSO index averaged from September
through November is used because the correlation be-
tween the Nile annual discharge and the ENSO index
during September–November is the highest compared
with other seasons (Eltahir 1996, Table 1). The temporal
coverage of the ENSO data is 1872–1986.

In the forecasting study, the ENSO index will be used
as one of the Nile discharge predictors. For the purpose
of forecasting, only the forecasts made before the flood
peak (in September) are useful. However, the ENSO
index we use is the SST anomaly from September to
November for that same year and cannot be measured
until after the flood peak. Therefore, the ENSO predic-
tion is needed in order to make real-time forecasts. In
section 6, a predicted ENSO index, provided by Dr. S.
E. Zebiak of Lamont-Doherty Geological Observatory
of Columbia University, for the period 1973–86, will
be used to verify the efficiency of the ENSO prediction
for the purpose of Nile flood forecasting. This predicted

ENSO index is Zebiak and Cane’s (1987) Nino-3 index
with a lead time of 12 months.

All the data used in the forecasting study are for the
period 1900–85, which is the overlapping period for all
the variables.

3. Spectral analysis

The use of rainfall and prior river flow in the annual
flood forecasting has an explicit hydrological motiva-
tion. However, the use of ENSO in the Nile flood fore-
casting is based on the observed teleconnection between
these two variables (Ropelewski and Halpert 1987;
Camberlin 1995; Eltahir 1996). Figure 2 plots the nor-
malized anomalies of the Nile annual discharge and that
of the September–November ENSO index. For the con-
venience of comparison, these two time series are plot-
ted in opposite coordinates. As shown in Fig. 2, in most
of the major El Niño events, the Nile discharge is ex-
tremely low. The converse effect, high discharge as-
sociated with La Niña events, is also very obvious. The
linear regression between the September–November
ENSO index and the Nile annual discharge yields a
correlation coefficient of 20.52. To confirm this cor-
relation, here we conduct a spectral and cross-spectral
analysis. Data used in this section are the monthly Nile
flow and Wright’s (1989) monthly ENSO index in their
overlapping period 1872–1986.

The spectrum of Nile flow and that of ENSO are
shown in Figs. 3a and 3b, respectively. Consistent with
previous studies (e.g., Trenberth and Shea 1987), the
power spectrum of ENSO is characterized by a broad
peak that extends over 3–10-yr (40–120 month) periods.
On the contrary, Nile flow has a distinguished peak at
a period of about 1 yr (12 months), although the data
used here has been deseasonalized by subtracting the
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FIG. 3. (a) The power spectrum of ENSO, (b) the power spectrum of Nile flow, (c) the squared coherency, and (d) the phase spectrum
between ENSO index and Nile flow. The monthly ENSO index and river flow data in the period 1872–1985 are used in these analyses. The
two dashed lines in (c) show the 5% and 1% significance level, respectively.

means and dividing by the standard deviations for dif-
ferent calendar months. Besides that, the power spec-
trum of Nile flow at very long periods is also very high.
Therefore, the seasonal variability and the long-term
variability in Nile flow are dominant. Figures 3c and 3d
show the squared coherency and the phase spectrum
between ENSO and Nile flow. As shown in Fig. 3c, the
coherence-square between Nile flow and ENSO exceeds
the 1% significance level in most of the frequency do-
main, with a broad peak in the 3–6-yr (40–70-month)
period range. This suggests that the variability of Nile
flow, on the timescales of 3–6 yr, is significantly cor-
related with ENSO. The phase spectrum (Fig. 3d) at the
corresponding timescale indicates that the anomaly of
Nile flow lags the anomaly of the ENSO index by about
3–5 months. Therefore, the ENSO index carries valuable
forecasting information about Nile flow.

Although the correlation between ENSO and the
worldwide river flow has long been recognized, the
physical mechanism involved remains a subject for ac-
tive research. Our spectral analysis presents evidence of
the association between the ENSO phenomena and Nile
discharge. It does not shed light on the physical mech-
anism behind the teleconnection. According to the
cross-spectral analysis, ENSO leads Nile flow by about
3–5 months. However, the correlation between the an-
nual discharge and the seasonal ENSO index gets its
maximum in the September–November season follow-
ing the Nile flood peak (Eltahir 1996). This might be
due to the fact that the ENSO signal is the strongest,
therefore most detectable, in that season. As mentioned
in section 2, the averaged ENSO index from September
through November will be used as a predictor of the
annual Nile discharge. Hereafter, when we talk about
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TABLE 1. Coefficients of determination (R2) between different var-
iables. The variable ‘‘flood’’ is the annual Nile flood. The variable
‘‘ENSO’’ is the monthly ENSO index averaged from Sep through
Nov. ‘‘Rainfall’’ stands for the accumulated rainfall amount from
May to the different forecasting time (Jun, Jul, or Aug). ‘‘River flow’’
is the accumulated discharge from Jun to the forecasting time.

Variable 1 Variable 2

Different time

Jun Jul Aug

Flood
Flood
Flood

Rainfall
River flow
ENSO

0.13
0.07
0.27

0.22
0.22
0.27

0.30
0.56
0.27

ENSO
ENSO
Rainfall

Rainfall
River flow
River flow

0.05
0.00
0.00

0.04
0.09
0.05

0.14
0.12
0.21

predictors of the Nile floods, we will simply mention
‘‘ENSO index’’ without specifying that it is the Sep-
tember–November value.

4. Methodology

Nile flood forecasts can be made at any time of the
year, although for the forecasting purpose only those
forecasts made before the flood peak are useful. We
perform our forecasts on the last day of each calendar
month, from January to December. The forecasts after
September are presented for comparison. For any fore-
cast made before the beginning of the hydrological year,
no rainfall or river flow information about that hydro-
logical year is available, so we simply use the latest
monthly rainfall and river flow observations available
as the sources of information. For the forecasts made
after 1 June, the total river flow from the beginning of
June accumulated up to that time is used as one pre-
dictor. Due to the time lag between rainfall and river
flow, rainfall in May of the last hydrological year also
contributes to the annual flood of the current hydrolog-
ical year, so the rainfall information used is the total
rainfall accumulated since the beginning of May. The
correlations of annual Nile flood with corresponding
accumulated rainfall and river flow at different times
are analyzed and tabulated in Table 1. The first two rows
of Table 1 list the coefficients of determination between
the annual flood and the amount of rainfall and river
flow used in the forecasts on the last day of June, July,
and August. As the time moves further into the hydro-
logical year, the correlation coefficients become larger,
therefore the rainfall and river flow information become
more useful for the forecasting process. Obviously,
when the forecasting time moves toward the end of the
hydrological year, it is obvious that the coefficient of
determination between the accumulated river flow and
the annual flood will approach 1.0.

The discriminant prediction we use here is also called
‘‘categoric prediction,’’ which forecasts the categoric
probabilities of the predictand according to the cate-
gories that the predictors fall into. All the data points

are divided into three categories, as is done in many of
the previous studies (Simpson et al. 1993a,b; Eltahir
1996). The data of Nile flow and annual flood are clas-
sified into ‘‘low,’’ ‘‘normal,’’ and ‘‘high’’ categories.
The rainfall data categories are labeled ‘‘dry,’’ ‘‘nor-
mal,’’ and ‘‘wet.’’ Similarly, the ENSO index is cate-
gorized as ‘‘cold,’’ ‘‘normal,’’ and ‘‘warm.’’ For the Nile
flood, rainfall, and prior river flow, the definition of
normal is the range from m 2 s/2 to m 1 s/2 (m is the
mean value and s is the standard deviation). The other
two categories contain those data lower and higher than
normal. For the ENSO index, we follow Simpson et al.
(1993b) and Eltahir (1996) to use 20.58C and 0.58C as
the boundaries for the ‘‘normal’’ category. Any con-
dition with an ENSO index lower than 20.58 is defined
as cold, and higher than 0.58C, as warm. The way we
define the boundaries between different categories is not
totally arbitrary. It is designed in such a way that the
number of data points contained in every category of a
specific variable are not dramatically different from each
other. In the real forecasts, the division of the categories,
even the number of the categories, depends on the par-
ticular forecast purpose. For example, when only the
extreme events (e.g., extremely wet or dry events, or
the extreme El Niño or La Niña episodes) are consid-
ered, a much wider range for the ‘‘normal’’ category or
a larger number of categories are recommended.

The categoric probabilities for the predictand, in this
case the annual flood in the Nile river, will be the fore-
cast results. For the forecasts that have three predictors,
the categoric probability is the conditional probability
with three conditions, that is, the probability of having
a Nile flood in any category (low, normal, and high)
given a certain category of ENSO condition (cold, nor-
mal, or warm), a certain category of rainfall condition
(dry, normal, or wet), and a certain category of river
flow condition (low, normal, or high). To compute these
conditional probabilities, an algorithm is developed us-
ing the Bayesian theorem, as will be described in section
5. For a specific year, the forecasting results would be
the three probabilities for the annual flood falling into
each of its three categories. However, generally, the
forecast is expressed by the forecasting probabilities of
each category of the Nile flood given every possible
combination of ENSO, rainfall, and river flow condi-
tions. To easily judge the forecasts skill and to compare
different forecasts, we propose a synoptic parameter, the
forecasting index (FI), which can measure the forecast
skill not only in this study but also in any other dis-
criminant forecast. The FI value is defined as the average
of the forecasting categoric probabilities for the cate-
gories that the observed Nile flood in each individual
year falls into during an n-yr period. First of all, in each
year j (j 5 1, . . . , n), the ENSO index, rainfall, and
river flow data are categorized. Accordingly, the prob-
ability of each Nile flood category can be forecasted,
and we denote it as the prior probability Pr(i, j), i 5 1,
2, 3. Then, the Nile flood observation in that year is
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categorized, and the posterior probability Pp(i, j) can be
identified as [1, 0, 0] in a low flow year, [0, 1, 0] in a
normal year, and [0, 0, 1] in a high flow year. FP(j), the
forecasting probability of the Nile flood category, which
describes the observed flood condition for that year, can
be computed as

3

FP( j) 5 P (i, j)P (i, j).O r p
i51

The forecasting index, FI, is the average of these prob-
abilities over a certain period:

n n 31 1
FI 5 FP( j) 5 P (i, j)P (i, j). (1)O O O r pn nj51 j51 i51

A larger forecasting index implies a more accurate fore-
cast. A perfect forecasting methodology would have an
FI of 1.0.

Traditionally, the discriminant forecast skill is mea-
sured using the proportion of correct forecasts, in which
the right category of the predictand gets the highest
predicted probability. Therefore, when the traditional
skill measure is used, a forecast of 80% (wet), 15%
(normal), and 5% (dry) for a wet year is no difference
from a forecast of 40% (wet), 35% (normal), and 25%
(dry). However, the skill measure proposed in this study
can tell the ‘‘accuracy’’ difference between different
forecasts, even if they might be all correct forecasts.
This new measure of skill provides a better tool to judge
the quality of categoric predictions.

5. The Bayesian theorem and forecasting
algorithm

a. Algorithm development

Any conditional probability can be computed by
counting all the relevant data points and normalizing it
by the number of all data points that satisfy the condition
or conditions. Here, we are interested in the conditional
categoric probabilities. All the data points that fulfill the
given condition(s) are counted; we then identify those
cases with a low, normal, and high annual flood, and
get the relative frequency distribution. Then the fore-
casting probability of each flood category can be com-
puted. By counting the data points conditionally, the
total data points are divided into several groups. If only
one condition is considered, the relevant data points will
be divided into nine groups, which is shown by Figs.
4a–c. To avoid statistical error, the number of the total
data points should be much larger than the number of
groups into which the whole record is divided by con-
ditional counting. However, the number of groups in-
creases exponentially with the number of conditions.
Considering only two conditions results in 27 groups,
and with three conditions we get 81 groups. Usually,
the limited data size makes this process impractical.

In this study, we are dealing with the forecasting prob-
ability of the Nile flood using three sources of infor-

mation (ENSO, rainfall, and prior river flow). Therefore,
a conditional probability with three conditions is in-
volved. To break through the limitation of data size, we
develop an approximate algorithm using the Bayesian
theorem. Details for Bayesian theory are described in
many statistical books (e.g., Winkler 1972; West 1989).

The Bayesian theorem can be expressed as

P(B /Q , A)P(Q /A)i iP(Q /A, B) 5 , (2)i P(B /A)

where P(Qi/A) is the possibility of event Qi given that
event A has occurred, and P(Qi/A, B) is the possibility
of event Qi given that both event A and event B have
occurred. Here, P(B/Qi, A), P(B/A), and the following
probabilities can be defined in a similar manner. As-
suming A and B are independent events, we can rewrite
Eq. (2) as

P(B /Q )P(Q /A)i iP(Q /A, B) 5 , (3)i 3

P(B /Q )P(Q /A)O j j
j51

where Qj represents a full group of events. Equation (3)
expresses P(Qi/A, B) as a function of P(Qi/A) and
P(B/Qi), i 5 1, 2, 3. When we compute P(Qi/A),
P(B/Qi) by the counting procedure, we only need to
divide the available data into nine groups. This can sig-
nificantly reduce the statistical error resulting from a
limited data size. The advantage of assuming indepen-
dence in the Bayesian algorithm is that the records of
the variables defining events A and B can be totally
nonoverlapping. If we have the data on Qi for both
period 1 and period 2, and have data on A only in period
1 and data on B only in period 2, the conditional prob-
ability can still be computed using Eq. (3), because no
relation between A and B is needed. This allows us to
include more information beyond the overlapping pe-
riod when the data in the overlapping period is too lim-
ited.

For the case including a third independent condition
C, the conditional probability P(Qi/A, B, C) can be de-
rived from Eq. (3).

Assume D 5 A < B; then C and D are independent
since A, B, and C are independent. Therefore,

P(C/Q )P(Q /D)i iP(Q /D, C) 5 .i 3

P(C/Q )P(Q /D)O j j
j51

Substituting D 5 A < B into the above equation yields

P(C/Q )P(Q /A, B)i iP(Q /A, B, C) 5 . (4)i 3

P(C/Q )P(Q /A, B)O j j
j51

The conditional probability with more conditions can
be derived similarly.

By substituting Eq. (3) into Eq. (4), a three-variable
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FIG. 4. Counting the data on the Nile flood with one condition (a)
ENSO, (b) rainfall, (c) river flow, respectively, divides the available
data into nine minor groups. ENSO is measured in 8C, rainfall in
mm; and river flow in km3. Rainfall in (b) is the accumulated amount
from May to July. The prior river flow in (c) is the accumulated
discharge from June to July.

conditional probability can be computed from a set of
one-variable conditional probabilities. If Q, E, P, and
R stand for the Nile annual flood (Q), the ENSO (E)
index, precipitation over Ethiopia (P), and prior Nile
River flow (R), respectively, the forecasting probability
P(Qi/E, P, R) is a function of P(R/Qj), P(P/Qj), P(Qj/E),
j 5 1, 2, 3.

To use Eqs. (3) and (4), we need to assume the in-
dependence between the input variables E, P, R. Al-
though these three variables are correlated with one an-
other, before September, the mutual correlation between
them is relatively weaker than their correlations with
the Nile annual flood, as shown in Table 1, which uses
June, July, and August as examples. The upper half of
the table lists the coefficients of determination between
the annual Nile flood and each of the input variables;
the lower half lists the coefficients of determination be-
tween each of the three input variables. In every month,
the values in the lower half are much smaller than those
in the upper half. Thus we can assume that the input

variables are statistically independent, although physi-
cally they are not.

b. Effect of the independence assumption

To look at the influence of the assumption of inde-
pendence between the predictors, a simple experiment
is designed. The data we are using covers the period
1900–85. If only two predictors are considered, this
record length is adequate for using the data-counting
method to compute the conditional probability of the
Nile flood. Here we forecast the Nile annual flood using
any two of these three predictors (the ENSO index, rain-
fall, river flow) by applying both the Bayesian algorithm
[Eq. (3)] and the data-counting procedure. As an ex-
ample, Table 2 tabulates the results of the forecasts
based on ENSO and rainfall information conducted in
July. We list only the forecasting probabilities in the
categories within which we have enough data points for
the use of the data-counting procedure. For the other
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TABLE 2. Nile flood forecast based on ENSO and rainfall infor-
mation. The probabilities over the slash are derived using data count-
ing, and those under the slash are the forecast results using the Bayes-
ian algorithm.

Conditions

ENSO Rainfall

Flood

Low Normal High

Cold Normal
Wet

0.14/0.02
0.00/0.01

0.64/0.66
0.12/0.00

0.21/0.32
0.88/0.99

Normal Dry
Normal

0.58/0.49
0.33/0.19

0.42/0.44
0.61/0.73

0.00/0.07
0.06/0.08

Warm Dry
Normal

0.77/0.79
0.50/0.48

0.23/0.19
0.50/0.48

0.00/0.02
0.00/0.04

FIG. 5. The FI values for forecasts based on ENSO and rainfall
information using two different methods: data counting and the
Bayesian algorithm.

combinations of rainfall and ENSO categories, we have
too few data points (less than 5 points) to conduct the
counting procedure. In Table 2, the value over the ‘‘/’’
is derived in the data-counting procedure, and that under
the ‘‘/’’ is derived using the Bayesian algorithm. As
shown, there is very small difference in terms of the
relative magnitude of the three probabilities; that is, the
category that gets the highest probability in the data-
counting process still has the highest probability when
it comes to the Bayesian algorithm. The forecast skills
measured by the FI values for the two methods are
plotted in Fig. 5, which shows no systematic difference
between these two. Figure 5 might imply that for the
dataset size and correlation magnitude we are dealing
with in this study, the statistical errors due to the data
size limitation for the two-condition data-counting
method has a similar magnitude as the errors caused by
the independence assumption in the algorithm we de-
veloped in this study. In other words, the advantage
brought to the forecasting process by breaking through
the limitation of data size could compensate for the
disadvantage caused by the approximate assumption.
Comparison between the two methods for forecasts us-
ing other combinations of predictors (i.e., rainfall and
river flow, or ENSO and river flow) supports the same
conclusion. The benefit from Bayesian methodology is
larger when we deal with three predictors. Therefore,
in this study, the damage for the forecasts quality caused
by the mutual dependence between ENSO index, rainfall
over Ethiopia, and Nile flow could be small. Hence, we
use Eqs. (3) and (4) in our study without considering
the mutual dependence between the three predictors.

6. Results

Using the Bayesian algorithm developed in section
5, we forecast the Nile annual flood using information
about ENSO, rainfall, and river flow as predictors. We
conducted both a calibration and a verification analysis.
The calibration period covers 50 yr, from 1900 to 1949,
and the verification period is 36 yr-long, from 1950 to
1985.

Our main objective here is to forecast the Nile flood
using three sources of information, the ENSO index,

rainfall over Ethiopia, and prior Nile flow. To show the
improvements that these three sources of information
bring to the quality of the flood forecasting, the cor-
responding forecasts using two predictors, one predictor,
and no predictor are also performed. The case with no
predictor refers to a forecast based solely on the his-
torical record of the annual flood, which is determined
by the division of the annual discharge categories. In
this case, using 1900–49 as the calibration period, the
forecasting probabilities for the low, normal, and high
flow categories are 30%, 44%, and 26%, respectively.
The forecasts using the predictor(s) start by adding
ENSO information, then adding the rainfall and river
flow information. To show the importance of ENSO
information, we also perform the forecasts using only
rainfall and river flow as predictors. Although only the
forecasts made before the Nile flood peak are useful,
for comparison we also perform those after the time of
the flood peak. For every case, the forecasting time
extends from the end of January to the end of December.
All the forecasts are made at the end of every month.
To be compact, hereafter, we will only mention the name
of that month when referring to the forecasts made at
the end of the month.

Here we use July as an example to show the calibrated
forecasting probabilities with three predictors, as tab-
ulated in Table 3. Once the ENSO, rainfall, and prior
river flow information for the July forecasts are col-
lected, Table 3 will give the forecast probabilities. Sup-
pose that in a specific year, the ENSO index is cate-
gorized as cold, and rainfall and river flow as wet and
high, then the probabilities for the annual discharge to
fall into the low, normal, and high categories are 1%,
10%, and 89%, respectively. In Table 3, it is worth
noticing that the probability of having a high Nile flood
is always zero when the ENSO index is in warm cat-
egory, which means that no high flood has ever been
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TABLE 3. The Nile flood probabilities for July forecast using
ENSO, rainfall, and river flow information.

Predictors

ENSO Rainfall River flow

Predictand (annual flood)

Low Normal High

Cold Dry Low
Normal
High

0.33
0.25
0.10

0.44
0.65
0.48

0.23
0.10
0.42

Normal Low
Normal
High

0.05
0.04
0.01

0.45
0.72
0.34

0.50
0.24
0.65

Wet Low
Normal
High

0.04
0.05
0.01

0.16
0.37
0.10

0.80
0.58
0.89

Normal Dry Low
Normal
High

0.66
0.53
0.34

0.29
0.45
0.52

0.05
0.02
0.14

Normal Low
Normal
High

0.21
0.14
0.06

0.59
0.80
0.59

0.20
0.06
0.35

Wet Low
Normal
High

0.47
0.23
0.06

0.29
0.52
0.25

0.24
0.25
0.69

Warm Dry Low
Normal
High

0.89
0.82
0.72

0.11
0.18
0.28

0.00
0.00
0.00

Normal Low
Normal
High

0.59
0.42
0.29

0.41
0.58
0.71

0.00
0.00
0.00

Wet Low
Normal
High

0.77
0.63
0.49

0.23
0.37
0.51

0.00
0.00
0.00

TABLE 4. Probabilities of the Nile flood in several extreme cases
of the Jul forecasts. Type 1 stands for the forecasts based on the
historical record; type 2 stands for the forecasts using ENSO as the
predictor; type 3 stands for the forecasts using ENSO, rainfall, and
river flow as predictors.

Predictors

ENSO
Rain-
fall

River
flow

Fore-
cast
type

Predictand (annual flood)

Low Normal High

Cold Wet High 1
2
3

0.30
0.07
0.01

0.44
0.40
0.10

0.26
0.53
0.89

Warm Dry Low 1
2
3

0.30
0.67
0.89

0.44
0.33
0.11

0.26
0.00
0.00

FIG. 6. The FI values in (a) calibration period (1900–49) and (b)
verification period (1950–85).

observed during major El Niño events in our calibration
period. In Table 4, the forecasting probability for two
extreme cases from Table 3 are compared with the fore-
casting results obtained by using the historical record
and by using ENSO solely. It shows that the addition
of ENSO information to the information from the his-
torical record modifies the forecasting probability for
the Nile flood to a large extent. Significant modification
is also obtained by introducing the rainfall and prior
river flow information in addition to ENSO. In both
cases, the incorporation of additional information tends
to result in a more definite forecast; that is, one of the
three categoric probabilities stands out and the other
two shrink.

Figures 6a and 6b demonstrate the skill measurements
(FI values) of the different forecasts. As we explained
in section 4, the FI value is computed by comparing the
forecasts with the observations.

a. Calibration (1900–49)

Figure 6a shows the FI values for different forecasts
in the calibration period. Based on the historical flood
record, we obtain an FI value of about 0.35. Because
the Nile flood data are divided into three categories, any
FI value not significantly higher than one-third indicates
a trivial forecast. The ENSO information introduces a
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significant improvement, with a jump of FI value as
high as 0.1, from 0.35 to 0.45. It is worth noting that
the skill improvement resulting from ENSO information
does not change with the forecasting time: FI is as high
as 0.45 (solid line with ‘‘1’’ sign) even as early as
January. If the rainfall and river flow information are
used in addition to the ENSO information, we get a
forecasting index that changes with the forecasting time.
Before June, which is the beginning of the hydrological
year, the addition of rainfall and river flow information
improves the forecasts skill by about 0.05. Skill com-
parison between the forecasts using all three predictors
(solid line) and the forecasts using ENSO and rainfall
(dash–dot line) shows that both the rainfall and river
flow information contribute to this improvement. The
dashed line in Fig. 6a represents the skill for the fore-
casts based on rainfall and river flow information. Be-
fore May, using rainfall or river flow as predictors is
equivalent to assuming pure hydrological persistence.
As shown, the forecast skills based on persistence (dash
line) are much lower than those based on ENSO index
(solid line with ‘‘1’’ sign). All these imply that for long-
range forecasting, ENSO is the most important source
of information. The rainfall and river flow information
available before June are from the last hydrological year,
so their role in the long-range forecasting of the flood
in the current hydrological year is not as important as
ENSO.

Since June, with more information about rainfall and
river flow becoming available, the forecasting quality
gains a larger improvement from the addition of rainfall
and river flow information. The rainfall information
boosts the FI value from 0.45 (solid line with ‘‘1’’ sign)
to 0.53 (dash–dot line), which does not change signif-
icantly in the forecasts made from June to September.
River flow information introduces additional improve-
ment to the forecasting quality, which becomes higher
and higher as the forecasting time progresses into the
current hydrological year. These lead to an FI value for
the forecasts using three predictors (solid line) as high
as 0.56 in July and 0.63 in August. Notice that the Nile
flow peak occurs in September. So on average, 2 months
before the flood peak, we forecast a probability of 56%
for the correct flood category, and 1 month before the
flood peak, this forecasted probability is 63%. Com-
paring with the FI value for forecasts using ENSO in-
formation solely (0.45), we conclude that the rainfall
and river flow information are very important in im-
proving the forecasting quality of the medium-range
forecasts. ENSO is also an important factor in the me-
dium-range forecasting since there is still a big gap be-
tween the skills for forecasts using rainfall and river
flow information and the skills for forecasts using
ENSO, rainfall, and river flow information.

After the time of the flood peak, significant infor-
mation about the river flow is available, thus it becomes
almost trivial to identify the right category of the annual
flood. As expected, the forecasting index approaches 1.0

when the river flow information is added to the fore-
casts.

b. Verification (1950–85)

The forecast skills in the verification period are shown
in Fig. 6b. Similar to the results in the calibration period,
ENSO is the most important information source for the
long-range forecasts, and rainfall and river flow infor-
mation improve the medium-range forecast skill. Two
noticeable differences between the calibration and ver-
ification periods are observed:

1) In the verification period, there is a dip in the skill
of April and May forecasts. This is caused by some
change in the rainfall seasonal pattern over the Ethi-
opian Plateau. During the verification period, there
are several extremely dry springs, with rainfall
amount less than 20% of its normal value, followed
by a very wet or normal summer. This kind of rainfall
pattern, or the other way around (wet spring followed
by dry summer), was not observed in the calibration
period. This change of precipitation persistence caus-
es the low forecast skill in April and May of the
verification period.

2) The medium-range forecast skills in the verification
period are generally higher than those in the cali-
bration period. The FI value for forecasts using three
predictors is 0.65 in July and 0.69 in August, com-
pared with 0.56 and 0.63 in the calibration period.
The FI value for the forecasts using ENSO solely is
the same as in the calibration period. Therefore, rain-
fall and river flow bring more information to the
medium-range forecasting in the verification period
than in the calibration period.

As cited before, an FI not larger than 0.34 indicates
a trivial forecast because the Nile flood is divided into
three categories. It is worth noting that, because of the
same reason, an FI value equal to or larger than 0.5
indicates a successful forecast. For example, suppose
that in a wet year, the forecast probabilities for the three
Nile flood categories are A (wet), B (normal), and C
(dry), where A 1 B 1 C 5 1.0. If A . 0.5, both B and
C must be less than A. Therefore, a correct forecast is
guaranteed regardless the values of B and C. For our
forecasts with three predictors, the FI values are almost
always larger than 0.5 in both the calibration and the
verification periods.

c. Effect of ENSO prediction

In the above ‘‘forecasts,’’ the ENSO index is based
on observation. However, in practice, we need to use
the predicted ENSO index [SST anomaly in the tropical
eastern Pacific Ocean (TEP) from September to No-
vember]. To investigate the influence of ENSO predic-
tion on Nile flood forecasting, we compare the forecasts
based on the ENSO prediction (‘‘Pre.’’ forecasts) with
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FIG. 7. FI value in a verification period 1973–86 for forecasts with
three predictors using predicted ENSO index (solid line) and observed
ENSO index (dashed line). The predicted ENSO index is Zebiak and
Cane’s (1987) Nino-3 index; the observed ENSO index was derived
from Wright’s SST data.

the hindcasts based on the ENSO observation (‘‘Obs.’’
forecasts). The predicted ENSO index covers the period
1973–85. Figure 7 plots the FI values for the forecasts
with three predictors, using 1973–85 as the verification
period. The dashed line stands for the Obs. forecasts,
and the solid line stands for the Pre. forecasts. Similar
to Fig. 6b, the low forecast skills in April and May are
caused by the shift of the rainfall seasonal pattern. Fig-
ure 7 shows no significant difference in the FI value for
the forecasts using ENSO prediction and ENSO obser-
vation, which suggests that the predicted ENSO index
works as well as the observed one. The long-range fore-
casting of the Nile flood can rely on the predicted ENSO
information.

7. Conclusions

The correlation between ENSO and the Nile discharge
is the basis of the proposed methodology for the me-
dium- to long-range forecasting of the Nile flood. The
ENSO index solely yields a reasonably accurate forecast
for the Nile flood, with an FI value of 0.45, compared
to 0.35 for the forecast based solely on the historical
record. In this study, we developed an algorithm to com-
bine other information with ENSO, and performed me-
dium- to long-range forecasting of the Nile flood using
information about ENSO, rainfall over Ethiopia, and
prior river flow of the Nile. For the long-range fore-
casting of the Nile flood (lead time longer than the hy-
drological response timescale), ENSO information plays
the dominant role. However, for the medium-range fore-
casts (lead time shorter than the hydrological response
timescale), information about rainfall and prior river
flow brings large improvement to the forecasting qual-
ity. In June, July, and August, the FI values for the

forecasts using three predictors are about 0.10–0.20
higher than the FI value for the forecasts using ENSO
solely. By using these additional information sources,
we achieved a significantly better medium-range fore-
cast.

As discussed in section 6, an FI value larger than 0.5
implies a successful forecast since the forecast proba-
bility for the correct category is the highest of the three.
The skill increase caused by the rainfall and river flow
information, ranging from 0.05 to 0.20 in this study,
boosted the FI value over 0.50 in almost all the forecasts
using three predictors. Therefore, we view the improve-
ment due to rainfall and river flow information as sig-
nificant. Our medium- to long-range forecasts for the
Nile river annual flood are successful.

For practical purposes, the predicted SST in TEP
should be used as the ENSO index. Based on the results
of this study, the ENSO prediction is good enough to
be used in the medium- to long-range forecasting of the
Nile flood. This assures the practicality of the fore-
casting procedure proposed in this paper.
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