Observations and Mechanistic Models of Dengue in Singapore

Submitted under the title: A mechanistic model for dengue under the coexistence of Aedes aegypti and Aedes albopictus in endemic areas

By: O. Mekki Seidahmed and Elfatih Eltahir

Ralph M Parsons Laboratory
Massachusetts Institute of Technology (MIT)

Where/when does dengue transmission occur?

How do we study dengue and climate?

 Computational:
 Mechanistic Modeling (2011-2016)

Observational:
 Fieldwork in Singapore (2013-2015)

Singapore: Study area

Two main findings from the field work 2013-2015

1. A monsoonal sequence of flushing-drying in breeding drains of *Aedes aegypti* happens before seasonal decline in dengue.

2. More dengue cases were reported from a low-rise subarea. This risk is influenced by outdoor breeding of *Ae. aegypti* in low-rise area.

Dengue and Rainfall in Singapore

Fig 3. A descriptive sketch for the rainfall flushing mechanism shows how intense rainstorms during the monsoon results in washing breeding of dengue vector from stagnant drains.

Rainfall flushing of the dengue vector Aedes aegypti

Seidahmed OME, Eltahir EAB (2016) A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore. PLoS Negl Trop Dis 10(7): e0004842. doi:10.1371/journal.pntd.0004842 http://journals.plos.org/plosntds/article?id=info:doi/10.1371/journal.pntd.0004842

Urban housing and risk of dengue

Outdoor abundance of Dengue vector

Mechanistic Modeling: Coupling Hydrology, Entomology and Dengue Transmission Simulator (HYDREDETS)

1) An explicit urban hydrology model

2) A mechanistic model for the lifecycles of Aedes aegypti and Aedes albopictus

Aedes aegypti (L.)

Inter/intra specific competition Predation Food availability

Rainfall effects on aquatic cohorts

Flushing of aquatic cohorts

$$n_t = \frac{N_t}{V_t}$$

$$n_{t+1} = \frac{n(t) \times V(t)}{V_{t+1}}$$

$$N_{t+1} = n_{t+1} \times V_t$$

N= total of aquatic stages, V= Water volume (m³), n= density of aquatic stages per volume, t= time step (hr)

One-dimensional displacement of flushed cohorts between grids

$$dd = v \times t$$

$$dd < dd_{mn} \rightarrow i = i$$

$$dd > dd_{mx} \rightarrow i = 0$$

$$dd_{mn} < dd < dd_{mx} \rightarrow i = i + dd$$

dd= Displaced distance (m), v= Water Velocity (m/hr), dd_{mn} =minimum x dimension (m), dd_{mx} = maximum x directions, i= x location of the cohort

3) Dengue Transmission Model

Simulations of HYDREDETS (2000-2010)

Flushing of aquatic stages

Vectorial capacity of Ae. aegypti and Ae. albopictus

Summary

- HYDREDETS model couples hydrology, entomology and disease transmission of dengue.
- The model is capable to simulate dengue under the coexistence of the two vectors of dengue, and under urban settings in endemic areas.
- HYDREDETS can be useful to assess vector control policies and study impact of climate change on dengue transmission
- A further evaluation for the model performance is needed.

Thank you