Introduction

West Africa currently has the highest rates of malaria
deaths in the world. Malaria transmission in this region
1s closely tied to climate, as rain fed water pools provide
breeding habitat for the anopheles mosquito vector, and
temperature affects the mosquito’s ability to spread
disease.

We have been engaged in decade-long study in West
Africa involving field observations and sophisticated
model simulations of village scale transmission. Here,
we present our framework of highly detailed, spatially
explicit mechanistic modelling, and give examples of
the advantages and applications of this approach..
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Advantages of mechanistic modelling approach

Evaluate malaria control interventions

Interventions at all points in the malaria transmission can
be represented 1in the model including those targeted at
mosquito larvae (environmental management, larvicide),
adult mosquitoes (insecticide treated bednets, indoor
residual spraying), and humans (vaccination, case
management).

This can facilitate planning
interventions by showing
which interventions would
be most effective for a given
location, and the levels ¥
control necessary to reduce 7
transmission A
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Threshold effects and nonlinearities

There are many nonlinearities and threshold effects in the
environment to malaria transmission pathway. This 1s
especially true at the fringes of transmission. Acquired
immunity, which is a function of previous inoculations,
also plays an important role in modifying disease
outcome. The mechanistic approach can resolve these
effects.
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Compare to observational data

Model results can be compared with observations at
multiple stages in the transmission cycle to ensure
accuracy. These comparisons give us confidence in our
simulation results for locations or variables for which
data are not available.
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Mechanistic modelling of the links between environment, mosquitoes and malaria
transmission in the current and future climates of West Africa
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Climate change

The environmental drivers of malaria transmission are
highly correlated. In West Africa, areas that are too dry
for malaria are also too hot for malaria. Statistical
relationships between environmental variables and
malaria prevalence based on current climate patterns
cannot be assumed to be valid as climate patterns change.
Using a mechanistic model, we can use predictions from
climate models to evaluate impacts of climate change.
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Source: Yamana & Eltahir, 2013

Entomology

e Processes
e Flight
e Biting

e Qvipositing
e Development
e Death

e Key parameters
e Mosquito growth and death rates
e Preferences for biting, resting,

Mosquito

e ovipositing behavior \

Malaria Transmission
(Immunology)

® Processes

e Human infection

e Disease clearance

e Acquired immunity

e Transmission to mosquito
e Key parameters

e Disease clearance rate
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Malaria

e Probability of transmission
e Rate of acquiring immunity
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