# Climate Change in the Nile Basin

Implications for water and agricultural management

Alexandre Tuel

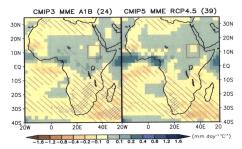
April 26, 2018

Introduction: Why care about climate change?

"Pricetag" of climate change:

- 1. Changing rainfall patterns:
  - Mean flow of the Nile
  - Inter-annual variability in water
- 2. Increased temperatures:
  - Higher irrigation water demand
  - Potential decline of agricultural yields
- 3. Sea-level rise:
  - Loss of agricultural land in the Nile Delta
  - Displacement of population

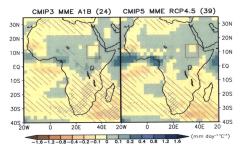
 $\rightarrow$  Discuss implications on water use / sharing in the basin!




- 1. Future of water resources in the basin
- 2. Temperature change, agricultural yields and cropping patterns
- 3. The Nile Delta and sea-level rise
- 4. Adapting to change

1. Future of water resources in the basin

# General considerations


- Most of the flow originates in Ethiopia, so we must focus on this region
- Potential impact on White Nile attenuated by Sudd swamps
- Up until recently, change in rainfall was unclear: conflicting model projections, no physical basis
- Recent work shed new light on physical forcings, helping select best models

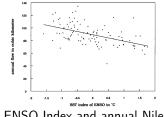


Multimodel June-September rainfall change for Africa, 2080-2099 vs. 1986-2005 [*Siam 2016*]

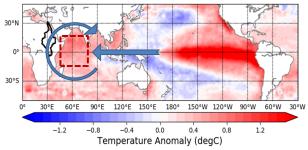
# General considerations

- Most of the flow originates in Ethiopia, so we must focus on this region
- Potential impact on White Nile attenuated by Sudd swamps
- Up until recently, change in rainfall was unclear: conflicting model projections, no physical basis
- Recent work shed new light on physical forcings, helping select best models



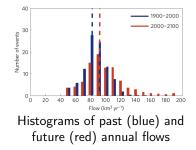

Multimodel June-September rainfall change for Africa, 2080-2099 vs. 1986-2005 [*Siam 2016*]

 $\rightarrow$  Climate change picture is now much clearer:


More water... but with more variability

# What drives interannual variability?

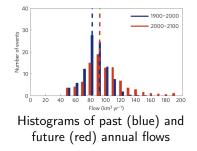
- Regional climate is naturally variable, with high year-to-year changes in rainfall and Nile flow
- Main source of variability comes from ENSO phenomenon, recently explained [Siam et al. 2016]
- Natural oscillating pattern of Pacific Ocean temperatures, with large-scale climate repercussions




ENSO Index and annual Nile flow [*Eltahir 1996*]



# ENSO's future and its consequences for the Nile


- In-depth study using most recent climate models predicting strong increase in ENSO variability, with theoretical, observational and modelling arguments [*Cai et al. 2014*, 2015]
- More floods and more droughts

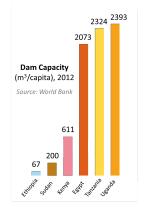


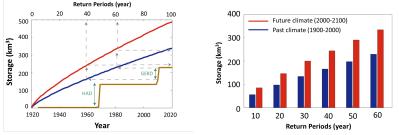


# ENSO's future and its consequences for the Nile

- In-depth study using most recent climate models predicting strong increase in ENSO variability, with theoretical, observational and modelling arguments [*Cai et al. 2014*, 2015]
- More floods and more droughts

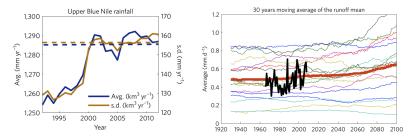






 $\rightarrow$  Increased inter-annual variability of Nile flow

also consistent with direct GCM projections for Upper Blue Nile basin

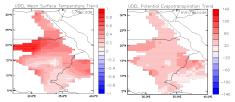
#### How much more storage?


- Significant changes in return periods: today's storage = 60 years (current climate) = 40 years (future climate)
- Reequilibrate storage between countries?

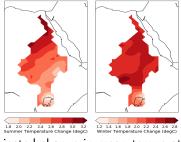




#### What about mean flow?


- Past studies have contradicted one another on the sign of rainfall/runoff change in UBN:
- Difficulty: a 10% change in precipitation translates into a 25% or greater change in runoff
- But careful model selection shows a slight (10%) increase in mean annual flow [Siam 2017]
- Projections for mean flow and variability are consistent with observed upward trends over past decades

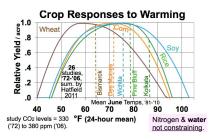


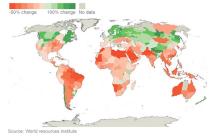

# 2. Temperature change, agricultural yields and cropping patterns

#### Temperatures are rising already... and will keep going up!

- Significant upward trends in mean and extreme temperatures over the last decades
- Temperatures expected to rise by 3-6°C by 2100
- Impacts on agricultural yield, cropping patterns, water demand
- Evaporation from Aswan could increase by 1.5-3km<sup>3</sup>




#### Observed trends (1980-2009), UDEL




Projected change in mean temperature for 2070-2100 (summer and winter), CMIP5 RCP 85 multimodel mean

#### Crop yield and temperatures

- Optimal crop growth not only dependent on water + inputs, but also temperatures
- Substantial evidence that most crops follow a bell-curve "yield vs. average temperature"
- Potential reduction in yields in Nile Basin due to temperature increase, pushing to the right of optimal
- Additionally: occasional heatwaves may devastate fields





Estimated impact of +3 degrees C change on crop yields by 2050

# Crop suitability areas

Different types of crops require different environmental conditions (water, temperature): Climate change will impact where crops can be grown!

**Substantial shifts** predicted in agricultural patterns, even with lower emissions scenario:

| Ethiopia                                                                | Egypt                               | Sudan                                 |
|-------------------------------------------------------------------------|-------------------------------------|---------------------------------------|
| Significant reduction in suitable area for staples (rice, wheat, maize) |                                     |                                       |
| All months remain suitable for cropping                                 | Summer crops more difficult         |                                       |
| More suitable<br>for "warm" crops                                       |                                     | Overall reduction<br>in suitable land |
| Rainfall variability:<br>perennial crops                                | Shift toward shorter-duration crops |                                       |

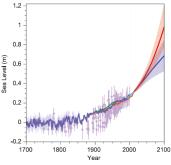
# 3. The Nile Delta and sea-level rise

# A vital agricultural region...

- 2.5% of Egypt's area
- > 30% of its population
- 30-40% of agricultural production
- Largest irrigated area in Africa (1.7 million ha)



#### But...


- Most of the delta is less than 5m above sea-level
- Already subsiding at 3-5mm/yr

# ... that will be damaged by climate change

- Sea-level rising everywhere, faster in the Eastern Mediterranean
- Low-end projection ≥ 50cm by 2100, at least 4 million people displaced
- Up to 18% of existing cropland could be lost
- Sea-water intrusion + salinisation: difficult agriculture management!







# 4. Adapting to change

- 1. Careful model selection shows slight upward trend in rainfall and river flow
- 2. Combined to environmental change (land-use, deforestation)

- 1. Careful model selection shows slight upward trend in rainfall and river flow
- 2. Combined to environmental change (land-use, deforestation)
  - $\rightarrow$  Opportunity for more rainfall in Ethiopia and more flow

- 1. Careful model selection shows slight upward trend in rainfall and river flow
- 2. Combined to environmental change (land-use, deforestation)
  - $\rightarrow$  Opportunity for more rainfall in Ethiopia and more flow
- 3. Increased interannual variability: more storage is needed to manage droughts and floods
- 4. Rising temperatures amplify losses in Aswan

- 1. Careful model selection shows slight upward trend in rainfall and river flow
- 2. Combined to environmental change (land-use, deforestation)
  - $\rightarrow$  Opportunity for more rainfall in Ethiopia and more flow
- 3. Increased interannual variability: more storage is needed to manage droughts and floods
- 4. Rising temperatures amplify losses in Aswan
  - $\rightarrow$  Dam location and operation strategy for the basin?

- 1. Careful model selection shows slight upward trend in rainfall and river flow
- 2. Combined to environmental change (land-use, deforestation)
  - $\rightarrow$  Opportunity for more rainfall in Ethiopia and more flow
- 3. Increased interannual variability: more storage is needed to manage droughts and floods
- 4. Rising temperatures amplify losses in Aswan
  - $\rightarrow$  Dam location and operation strategy for the basin?
- 5. Crop suitability areas + crop water demand will change
- 6. Fertile agricultural lands in Egypt severely threatened

What have we seen?

- 1. Careful model selection shows slight upward trend in rainfall and river flow
- 2. Combined to environmental change (land-use, deforestation)
  - $\rightarrow$  Opportunity for more rainfall in Ethiopia and more flow
- 3. Increased interannual variability: more storage is needed to manage droughts and floods
- 4. Rising temperatures amplify losses in Aswan
  - $\rightarrow$  Dam location and operation strategy for the basin?
- 5. Crop suitability areas + crop water demand will change
- 6. Fertile agricultural lands in Egypt severely threatened

 $\rightarrow$  Where should what be grown under future water/temperature constraints?

#### Integrating water and climate scenarios

Things to think about...

- Whole basin is affected, but each country differently, strengthening differences
- Population growth/technological uncertainty add to uncertainty
- Coordinating reservoirs for climate change mitigation
- Strengthening intra-basin agricultural trade can help adapt to new agricultural constraints
- Long-term reflexion on economic development: benefit- or water-sharing?

#### Integrating water and climate scenarios

Things to think about...

- Whole basin is affected, but each country differently, strengthening differences
- Population growth/technological uncertainty add to uncertainty
- Coordinating reservoirs for climate change mitigation
- Strengthening intra-basin agricultural trade can help adapt to new agricultural constraints
- Long-term reflexion on economic development: benefit- or water-sharing?

# → Building **resiliency** of the system

#### Integrating water and climate scenarios

Things to think about...

- Whole basin is affected, but each country differently, strengthening differences
- Population growth/technological uncertainty add to uncertainty
- Coordinating reservoirs for climate change mitigation
- Strengthening intra-basin agricultural trade can help adapt to new agricultural constraints
- Long-term reflexion on economic development: benefit- or water-sharing?

#### → Building **resiliency** of the system

→ Allowing long-term flexibility in agreement

#### Conclusion

1. Climate change brings opportunity for **more water**, but at the price of impacting where and how crops are grown (Nile Delta, suitability zones)

 Water security under a changing climate will be even less achievable within a single country's borders: basin-wide cooperation and negociation is the only option!