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CO2 emissions, low income, and high vulnerability. The frequency and pattern of river flood occurrence
due to climate change exhibit a north-south gradient (Kam et al., 2021), with flood frequency projected
to increase in regions such as Southeastern Asia and Eastern Africa and decrease in regions such as North
America and Europe (Hirabayashi et al., 2013). The effect of climate hazard might be extended to soil
systems with considerable losses in soil carbon stocks in high-latitude areas and an expected increase in
tropical regions (Crowther et al., 2016). This suggests a reverse disparity where developing countries are
benefiting from climate change while developed countries are losing. Moreover, the timing of climate hazards
also exposes a north-south contrast as reported by Park et al. (2018). According to Park et al. (2018), while
the time for the emergence of aridification due to climate change in the global south is expected to mostly
occur before 2050, it might occur later than 2050 in the global north. Until recently, climate hazard did
not seem to affect the large discrepancies in climate risk between countries - the global north and the global
south and/or rich and poor countries and/or high and low emitters of greenhouse gases (Fig. S3).

Our results present some important caveats. First, the simulated temperature from CMIP5/CMIP6 models
has systematic biases of temperature (Fig. S6). In turn, the biases may be transmitted to the historical runs
and future projections of outdoor days to some degree (Fig. S7). Nevertheless, the overall pattern of outdoor
days is well captured by the climate models. Note that, compared to the CMIP5 models, the CMIP6 models
tend to better represent the observed spatial patterns of temperature and outdoor days over the world for the
historical period, due to their remarkable improvements, in terms of spatial resolution, physical processes,
and biogeochemical cycles (Eyring et al. 2016). Second, the human feeling of weather is complex and a
widely subjective matter, and therefore, the definition of mild weather is non-trivial (van der Wiel et al.
2017). However, it can broadly be defined as pleasant weather conditions allowing most people to enjoy
outdoor activities such as walking, jogging, cycling, or those related to construction and tourism industries
(Lin et al. 2019; van der Wiel et al. 2017; Zhang 2016). Although we, here, defined outdoor days assuming
a range of temperature from 10 to 25 , the exact range of temperature or variable used does not significantly
affect the global distribution of the climate risk induced by changes in outdoor days (Fig. 10; Table S3;
see interactive visualization at https://eltahir.mit.edu/globaloutdoordays/). In particular, considering other
variables, such as wet-bulb temperature (Fig. S8) and different ranges of temperature resulted in a broadly
similar pattern, supporting the north-south disparity. Third, analysis for some specific countries might show
contrasting responses of outdoor days to climate change within the different climate regions of a country as
shown by Choi et al. (2023) for the United States.

Fig. 10. Change in outdoor days with different definitions. Normalized change in annual outdoor days in
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1991–2020 with respect to 1961-1990. Various definitions considered in this study are indicated in each plot.
The changes are normalized by the 1961-1990 mean. These global maps are derived from ERA5.

5. Conclusions

Here, we used the state-of-the-art reanalysis data and projections from 60 GCMs (31 CMIP5 and 29 CMIP6)
to propose that the climate hazard associated with the change in outdoor days (i.e., the number of days
with pleasant weather that allows for outdoor activities by most people) could contribute to the north-south
disparity that sustains inequality and injustice of climate change. We project that this disparity is expected
to increase considerably in the future, assuming the high emissions scenarios.

Our results have important implications for the injustice of climate change. That is, the negative impacts
of climate change accompanied by the decreased outdoor days will significantly affect tropical countries,
including Colombia, Brazil, Ivory Coast, Nigeria, Sudan, Indonesia, Bangladesh, and India, which are de-
veloping countries with large populations but relatively minor emitters of carbon dioxide (Figs. S3 and S9).
Meanwhile, some of the historically largest emitters of carbon dioxide, including the United States, Canada,
the European Union, Russia, and Japan may benefit to varying degrees from the increased outdoor days. It
is important to note that climate risk inferred from the existing literature may be substantially underesti-
mated, especially in tropical regions since they do not consider risk caused by the climate hazard related to
outdoor days, as evident from our analysis.

The findings reported here are not only important from the point of view of climate risk and how it varies spa-
tially and temporally, but they also contribute to informing the ongoing discussions regarding compensations
for loss and damage imposed by climate change.
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