We are interested in understanding how regional land use/land cover change as well as global climate change may impact society through changes in the patterns of water availability, extreme weather, and spread of vector-borne diseases. We develop sophisticated numerical models (MIT Regional Climate Model (MRCM); and the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS)) that are used for predicting such impacts at regional scales. We test these models against satellite observations and archived data sets of hydrologic and atmospheric variables, as well as data collected in our own field campaigns.

Screen Shot 2016-04-05 at 10.41.01 AM

Schematic of HYDREMATS

Screen Shot 2016-04-05 at 10.41.36 AM

Schematic of MRCM



The Mediterranean region, and Morocco in particular, are projected to experience some of the sharpest precipitation declines among all world regions under climate change. Yet, to this day, there is limited understanding of why models are predicting such a dire future for this region. Using global and regional climate simulations, our ongoing research focuses on identifying the physical mechanisms responsible for future wintertime Mediterranean climate. The end goal is to help countries like Morocco develop better-informed, long-term climate adaptation plans to prepare for potential reduction in water availability.

Currently, our group also works to understand future heat wave and drought events in Central North America, predominately the Midwest and Great Plains of the United States. These areas are centers of economic importance, but also home to large portions of the population, and it is important to quantify the intensity and spatial extent of dangerous conditions that may be observed in a changing climate. Of particular interest are humid heat waves, and the changes in the climatology of wet bulb temperature, which provides an improved metric for quantifying deadly conditions. Both long-term and short-term drought events will also be studied, from agricultural droughts, to the potential that this region will experience another Dust Bowl like drought in the future.

During the 1990s, our group developed a theory defining the role of vegetation distribution, as a lower boundary for the atmosphere, in shaping the dynamics of monsoons. This exposed a coupled natural system exhibiting multiple equilibria under the same forcing. We used that theory to predict and explain the impact of human activities such as deforestation, irrigation, and desertification on rainfall distribution in Africa.

Screen Shot 2016-04-04 at 3.46.02 PM

Response of the biosphere-atmosphere system to vegetation perturbations

Screen Shot 2016-04-04 at 3.46.40 PM

The annual rainfall in the Sahel

However, the ocean, and not vegetation, is the lower boundary of the atmosphere for most of the Earth. This important role of the ocean was apparent in our discovery of the connection between natural variability in the Nile flow and the oceanic phenomenon of El Nino. We used this connection to predict how climate change may impact the Nile floods in the future, as well as in development of a new methodology for seasonal prediction of the Nile flow. This methodology has been adopted for operational use in the region.

 Screen Shot 2016-04-04 at 3.49.13 PM
The relation between the annual Nile flow and ENSO 1872-1972

During the last two decades, Eltahir group established and maintained long-term field sites to study the ecology of malaria transmission in several African villages. Research in this group resulted in improving state-of-the art tools for planning environmental management of this disease under the current climate, and projected a less worrisome future for malaria in West Africa than suggested by previous studies.

Screen Shot 2016-04-04 at 3.50.58 PMSampling locations in Banizoumbou, Niger.

More recently, we identified the “hottest” spot on Earth: the area around the Persian Gulf, and predicted that habitability of this region will be severely impacted in the future due to deadly summer heat waves that can be triggered by global climate change. This work received exceptionally broad media attention (Altmetric index of 1679). This study was followed by two complementary studies focusing on South Asia, and Eastern China, which received similar levels of attention, suggesting a significant role in shaping the global public policy debate about global climate change.